• Title/Summary/Keyword: Vertical Calibration

Search Result 154, Processing Time 0.03 seconds

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River (금강 백제보 구간 수온성층 형성과 임계유속 관계)

  • Kim, Dong-min;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • In Geum River of Korea, three multi-purpose weirs were built at the downstream of Daecheong Reservoir during the Four Major River Restoration Project (FMRRP). The weirs have altered the hydraulic characteristics of the river, and consequently transformed the large areas of flowing ecosystem to deep and wide stagnant environment. In every summer, a thermal stratification occurred near the Baekje Weir having mean depth of 4.0 m, and the surface algal blooms dominated by buoyant cyanobacteria have been frequently formed after the FMRRP. The objective of this study was to investigate the relationship between flow velocity and thermal stability of the waterbody using a three-dimensional (3D) hydrodynamic model (EFDC+) after calibration against the thermistor chain data obtained in 2014. A new Sigma-Zed vertical grid system of EFDC+ that minimize the pressure gradient errors was used to better simulate the thermodynamics of the waterbody. The model reasonably simulated the vertical profiles of the observed water temperatures. The vertical mean flow velocity and the Richardson Number (Ri) that represents the stability of waterbody were estimated for various management water levels and flow rates scenarios. The results indicated that the thermal stability of the waterbody is mostly high ($Ri{\gg}0.25$) enough to establish stratification, and largely depend on the flow velocity. The critical flow velocity that can avoid a persistent thermal stratification was found to be approximately 0.1 m/s.

Evaluation of Target Failure Level on Sliding Mode of Vertical Breakwaters using Safety Factors (안전율을 이용한 직립 방파제의 활동에 대한 목표파괴수준 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can evaluate the target failure/safety levels on any failure modes of harbor structures as a function of central safety factor. Unlike the calibration method based on the average safety level of conventional design criteria, the target failure/safety level can be directly evaluated by only using central safety factors of the harbor structures which have been designed by safety factor method during the past several decade years. Several mathematical relationships are represented to straightforwardly connect the conventional safety factor design method with reliability-based design method. Even though limited data have been used in applying Monte-Carlo simulation method to sliding failure mode of the vertical breakwaters, it is found that target reliability indices evaluated by the suggested method in this paper is satisfactorily agreement with new criteria of reliability index of Japan.

A Study on Development and Application of New Borehole Roughness and Verticality Measurement System (BKS-LRFS) for Drilled Shafts (현장타설말뚝의 굴착공 벽면거칠기 및 연직도 측정 시스템(BKS-LRPS)의 개발 및 적용성에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.55-68
    • /
    • 2009
  • A new borehole roughness and verticality measurement system (BKS-LRPS) for rock socketed drilled shafts were developed and verified its field application. The stability of BKS-LRPS was verified for several field conditions, which included the effect of measuring unit shaking, the application of water/air calibration factors, and the resistance of high water pressure inside piles. Also, effective measurement distances for various conditions of turbidity were defined in the field by measuring borehole roughness and vertical alignment for 6 drilled shafts. Vertical alignments for all drilled shafts could be measured by BKS-LRPS. However, borehole roughness was not able to be measured due to high turbidity caused by RCD drilling processing. Based on the BKS-LRPS field verification, BKS-LRPS is the first borehole roughness and verticality measurement system applying both in the water and air.

Analysis of Cementation Effect on Small Strain Shear Modulus of Sand (사질토의 미소변형 전단탄성계수에 대한 고결영향 분석)

  • Lee, Moon-Joo;Choo, Hyunwook;Choi, Sung-Kun;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.51-58
    • /
    • 2009
  • In this study, the small strain shear moduli ($G_{max}$) of uncemented and gypsum-cemented sands are evaluated by performing a series of bender element tests on the specimens reconstituted in the calibration chamber. It is observed from the experimental results that $G_{max}$ of crushed-sands is about 35~50% smaller than that of natural sands. The increase in gypsum content is observed to result in an exponential increase of $G_{max}$ value. It is also shown that the relative density has more significant effect on $G_{max}$ of cemented sand, whereas the vertical effective stress has more significant influence on $G_{max}$ of uncemented one. A prediction equation for cemented sand is expressed as a function of gypsum content as well as void ratio and vertical effective stress.

System Development for Providing Optimal Friction Force for Sorting Machine

  • Lee, Jeong-Wook;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2555-2559
    • /
    • 2003
  • In this study, we develop an automatic sorting system, which is mostly affected by frictional forces between a veneer and friction-generating device. So we will make a suitable dynamic model and mechanism to control friction force using a AC servo-motor. We suggest Stick friction and Column friction model, which is occurred between roller and veneer and within veneers as well. A kind of sensor can get the velocity of roller and movement of roller vertical direction. We assume that the several things to simplify the complicate and difficult nonlinear friction phenomenon. And to create an optimal normal force, which can generate a suitable friction force, we control the movement of sorting roller and supporter as well. We introduce several results about a friction character and suggest the value of calibration of sorting roller movement and supporters as well.

  • PDF

High Accuracy Measuring System on the Machine Tool by Neasurement Error Compensation (신뢰도를 고려한 측정시스템의 개선)

  • 공민규;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.527-532
    • /
    • 1993
  • MascMC system is one of the MMC system module which performs measuring and checking of machined workpieces on the machine tools. Accuracy of the MascMC was compensated for developing a reliable measuring system by measurement error calibration. Reference gauges, ring gauges, block gauges,squares, spheres and cylindrical squares, were used for error identification and compensation. .+-. 10 .mu. m accuracy with 95% confidence interval was confirmed on the vertical and the horizontal machining center through the large number of experiments.

  • PDF

Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry (PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구)

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

A Development of Electron Optics System of Mini-Sized SEM (소형주사전자현미경용 전자공학계의 개발)

  • Park, Man-Jin;Kim, Il-Hae;Kim, Dong-Hwan;Jang, Dong-Young;Han, Dong-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.140-144
    • /
    • 2007
  • As an electron scanning microscopes has traditionally required a considerably large room equipped with several service and pipe lines due to its inherent size. As an alternative, a small sized SEM, simply called a mini-SEM, is introduced even if the performance in terms of magnification and resolution is a little inferior to a classical thermal SEM. However, the size and fabrication cost is dramatically reduced, dedicating to opening a new market. The optical system in the mini-SEM is redesigned and specimen stage is quitely reduced and vertical axis is excluded. The design tools and calibration techniques to develope the mini-SEM are introduced and its performance is verified through numerical analysis experiments.