• Title/Summary/Keyword: Vertical Absorber

Search Result 89, Processing Time 0.028 seconds

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber (수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구)

  • Thanh-Tong Phan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Influence of surfactant on heat transfer of air-cooled vertical absorber (공냉식 수직 흡수기의 열전달에 미치는 계면활성제의 영향)

  • 윤정인;권오경;문춘근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.740-748
    • /
    • 1999
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare inner surface, groove inner surface, corrugated inner surface and spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of film Reynolds number in the range of 20~200. Experiments were tarried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

  • PDF

Effect of the Flow Rate of Coolant on the Absorption Peformance of a Vertical Absorber (수직 액막형 흡수기의 흡수성능 변화에 미치는 냉각수 유량의 영향)

  • Kim Jung-Kuk;Cho Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.410-417
    • /
    • 2006
  • The present study predicted the effect of the flow rate of coolant on the absorption performance of a vertical falling film type absorber Heat and mass transfer peformances were numerically investigated. The exit temperatures of solution and coolant were decreased as the flow rate of the coolant was increased at the film Reynolds number of 100. The absorption mass flux was increased and then decreased as the distance from the inlet of the absorber was increased. The distance showing the maximum absorption mass flux was ranged from 0.3 to 0.5m. The heat flux and the absorption mass flux were increased and then slowly decreased as the flow rate of the coolant was increased. The maximum values were obtained at the flow rate of coolant of 2.0L/min.

Analysis of heat and mass transfer in a vertical tube absorber cooled by air (공랭형 수직원관 흡수기에서의 열 및 물질전달 해석)

  • Kim, Seon-Chang;O, Myeong-Do;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.

Numerical Study on the change of Absorption Characteristics by Change of Flow pattern in the Vertical Falling Film Absorber (수직 액막 흡수관의 유동변화에 따른 흡수성능 변화에 관한 해석적 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.90-96
    • /
    • 2003
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of LiBr solution. In the present study, the behavior of laminar-wavy falling film in the vertical absorber was studied analytically and experimentally. The change of absorption performance on mean film thickness, wave amplitude, wave celerity was analysed. The heat and mass transfer equations are solved simultaneously to give the temperature and concentration variations at the LiBr solution/refrigeration vapor interface and at the wall. Effects of uniform film, wavy film and film Reynolds number on the heat and mass transfer coefficients have been estimated. The analytical results of the uniform and wavy falling film in the bare tube was higher than experimental result for $Rd_{t}<100$. The absorption performance showed the maximum at the wavy film by the insert device(spring).

  • PDF

Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film (수직 액막형 흡수기의 성능 최적화에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Effect of a non-absorbable gag on the absorption process in a vortical tube absorber (수직원관형 흡수기의 흡수과정에 미치는 비흡수가스의 영향)

  • 허기준;정은수;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.456-465
    • /
    • 1998
  • Effect of a non-absorbable gas on the absorption process in a vertical tube absorber was investigated numerically. The water vapor mined with air as the non-absorbable gas is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. It was shown that the local absorption rate decreases as the mass fraction of air in water vapor increases. The vapor pressure of water at the liquid-vapor interface reduces significantly since the non-absorbable gas is accumulated near the interface. The effect of non-absorbable gases on absorption rate becomes larger as the mass flow rate of the vapor decreases. For small amount of non-absorbable gases the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. Total absorption rate increases as the mass flow rate of the vapor increases for large concentration of non-absorbables at the inlet of an absorber.

  • PDF

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Optimum Design of Dynamic Vibration Absorber for Reducing Bending Vibrations of Two-Piece Vehicle Drive Line (2축 분할식 차량 구동라인의 굽힘진동 저감을 위한 동흡진기 최적설계)

  • Lee, Sang-Beom;Yoo, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.118-124
    • /
    • 2010
  • In this paper, design parameters of dynamic vibration absorber, which is used to reduce bending vibrations of a vehicle drive line, is optimized. For obtaining the correct dynamic response characteristics, a flexible-body drive line is made by applying the flexibility data extracted from vibration analysis of propeller shafts to the drive line dynamic model. Inner tube mass, rubber stiffness and rubber damping coefficient of the dynamic vibration absorber are taken as design parameters for optimization. To minimize the vertical acceleration of the drive line, a second-order regression equation of the objective function is generated by performing the central composite experimental design with 3 factors, 2 levels and 15 test runs. And the design parameters of the dynamic vibration absorber are determined by using optimization program. The vehicle model with optimized dynamic vibration absorber reduces the vertical acceleration peak of the drive line by 17.1 % in compared with the initial model.