• Title/Summary/Keyword: Vertebral spine

Search Result 302, Processing Time 0.028 seconds

Evaluation of the Degenerative Changes of the Distal Intervertebral Discs after Internal Fixation Surgery in Adolescent Idiopathic Scoliosis

  • Dehnokhalaji, Morteza;Golbakhsh, Mohammad Reza;Siavashi, Babak;Talebian, Parham;Javidmehr, Sina;Bozorgmanesh, Mohammadreza
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1060-1068
    • /
    • 2018
  • Study Design: Retrospective study. Purpose: Lumbar intervertebral disc degeneration is an important cause of low back pain. Overview of Literature: Spinal fusion is often reported to have a good course for adolescent idiopathic scoliosis (AIS). However, many studies have reported that adjacent segment degeneration is accelerated after lumbar spinal fusion. Radiography is a simple method used to evaluate the orientation of the vertebral column. magnetic resonance imaging (MRI) is the method most often used to specifically evaluate intervertebral disc degeneration. The Pfirrmann classification is a well-known method used to evaluate degenerative lumbar disease. After spinal fusion, an increase in stress, excess mobility, increased intra-disc pressure, and posterior displacement of the axis of motion have been observed in the adjacent segments. Methods: we retrospectively secured and analyzed the data of 15 patients (four boys and 11 girls) with AIS who underwent a spinal fusion surgery. We studied the full-length view of the spine (anterior-posterior and lateral) from the X-ray and MRI obtained from all patients before surgery. Postoperatively, another full-length spine X-ray and lumbosacral MRI were obtained from all participants. Then, pelvic tilt, sacral slope, curve correction, and fused and free segments before and after surgery were calculated based on X-ray studies. MRI images were used to estimate the degree to which intervertebral discs were degenerated using Pfirrmann grading system. Pfirrmann grade before and after surgery were compared with Wilcoxon signed rank test. While analyzing the contribution of potential risk factors for the post-spinal fusion Pfirrmann grade of disc degeneration, we used generalized linear models with robust standard error estimates to account for intraclass correlation that may have been present between discs of the same patient. Results: The mean age of the participant was 14 years, and the mean curvature before and after surgery were 67.8 and 23.8, respectively (p<0.05). During the median follow-up of 5 years, the mean degree of the disc degeneration significantly increased in all patients after surgery (p<0.05) with a Pfirrmann grade of 1 and 2.8 in the L2-L3 before and after surgery, respectively. The corresponding figures at L3-L4, L4-L5, and L5-S1 levels were 1.28 and 2.43, 1.07 and 2.35, and 1 and 2.33, respectively. The lower was the number of free discs below the fusion level, the higher was the Pfirrmann grade of degeneration (p<0.001). Conversely, the higher was the number of the discs fused together, the higher was the Pfirrmann grade. Conclusions: we observed that the disc degeneration aggravated after spinal fusion for scoliosis. While the degree of degeneration as measured by Pfirrmann grade was directly correlated by the number of fused segments, it was negatively correlated with the number of discs that remained free below the lowermost level of the fusion.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Balloon Kyphoplasty through Extrapedicular Approach in the Treatment of Middle Thoracic Osteoporotic Compression Fracture : T5-T8 Level

  • Kim, Hyeun-Sung;Kim, Seok-Won;Ju, Chang-Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.363-366
    • /
    • 2007
  • Objective : Kyphoplasty performed in the middle thoracic spine presents technical challenges that differ from those in the lower thoracic or lumbar region due to small pedicle size and angular severity for thoracic kyphosis. The purpose of this study was to evaluate the efficacy of balloon kyphoplasty through extrapedicular approach for the treatment of intractable osteoporotic compression fractures in the middle thoracic spine. Methods : The patients who were performed with one level balloon kyphoplasty through extrapedicular approach due to painful osteoporotic compression fractures at T5-T8 from June 2003 to July 2005 were retrospectively analyzed. Imaging and clinical features were analyzed including involved vertebrae level, vertebral height, Injected cement volume, clinical outcome and complications. Results : Eighteen female patients (age ranged from 60 to 77 years old) were included in this study. The average amount of the implanted cement was $4.2{\pm}1.5\;cc$. The mean cobb angle and compression rate were improved from $12.1{\pm}6.5^{\circ}$ to $8.5{\pm}7.2^{\circ}$ and from 30% to 15%, respectively. The mean pain score (visual analogue scale) prior to kyphoplasty was 7.9 and it decreased to 3.0 after the procedure. Cement leakage to the adjacent disc (2 cases) and paravertebral soft tissues (1 case) were seen but there were no major complications such as pneumothorax, segmental arte 이 Injury, pulmonary embolism, or epidural leakage. Conclusion : Balloon kyphoplasty through extrapedicular approach is considered as a safe and effective in treating the middle thoracic regions with low complication rate.

Back Muscle Changes after Pedicle Based Dynamic Stabilization

  • Moon, Kyung Yun;Lee, Soo-Eon;Kim, Ki-Jeong;Hyun, Seung-Jae;Kim, Hyun-Jib;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • Objective : Many studies have investigated paraspinal muscle changes after posterior lumbar surgery, including lumbar fusion. However, no study has been performed to investigate back muscle changes after pedicle based dynamic stabilization in patients with degenerative lumbar spinal diseases. In this study, the authors compared back muscle cross sectional area (MCSA) changes after non-fusion pedicle based dynamic stabilization. Methods : Thirty-two consecutive patients who underwent non-fusion pedicle based dynamic stabilization (PDS) at the L4-L5 level between February 2005 and January 2008 were included in this retrospective study. In addition, 11 patients who underwent traditional lumbar fusion (LF) during the same period were enrolled for comparative purposes. Preoperative and postoperative MCSAs of the paraspinal (multifidus+longissimus), psoas, and multifidus muscles were measured using computed tomographic axial sections taken at the L4 lower vertebral body level, which best visualize the paraspinal and psoas muscles. Measurements were made preoperatively and at more than 6 months after surgery. Results : Overall, back muscles showed decreases in MCSAs in the PDS and LF groups, and the multifidus was most affected in both groups, but more so in the LF group. The PDS group showed better back muscle preservation than the LF group for all measured muscles. The multifidus MCSA was significantly more preserved when the PDS-paraspinal-Wiltse approach was used. Conclusion : Pedicle based dynamic stabilization shows better preservation of paraspinal muscles than posterior lumbar fusion. Furthermore, the minimally invasive paraspinal Wiltse approach was found to preserve multifidus muscles better than the conventional posterior midline approach in PDS group.

Bone Cement Augmentation of Pedicular Screwing in Severe Osteoporotic Spondylolisthetic Patients

  • Kim, Hyeun-Sung;Park, In-Ho;Ryu, Jae-Kwang;Kim, Seok-Won;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.1
    • /
    • pp.6-10
    • /
    • 2007
  • Objective : The purpose of this study was to determine the effect of bone cement augmentation of pedicular screwing in severe osteoporotic spondylolisthetic patients. Methods : Twenty patients with spondylolisthesis (8 : spondylolytic spondylolisthesis 12 : degenerative spondylolisthesis) who had undergone pedicular screwing and interbody fusion for osteoporotic lumbar spine (T-score on bone mineral density<-3.0) from 2002 to 2005 were reviewed. Mean age was 62.3 years with 3 male and 17 female patients. Average follow-up period was 14 months. Average T-score on bone mineral density (BMD) was -3.62. After decompression of neural elements, about 6cc of polymethylmethacrylate (PMMA) was injected into the each vertebral body through transpedicular route. All patients underwent one level interbody fusion and pedicular screw fixation. Clinical outcome was assessed using Oswestry Disability Index (ODI) on the last clinical follow-up. In addition, a modified MacNab's grading criteria was used to objectively assess patient's outcome postoperatively. Radiographic analysis of sagittal contour was assessed preoperatively, immediately postoperatively, and at final follow-up including fusion rate. Results : Eighteen of 20 patients were graded as excellent or good according to the modified MacNab's criteria. An significant improvement of ODI was achieved in both groups. Mean sagittal angle at the preoperative state, postoperative state and at the last follow-up state was $11.0^{\circ},\;20.1^{\circ}$ and $18.3^{\circ}$, respectively, with mean sagittal angle correction gain $7.3^{\circ}$. Firm fusion was achieved in all patients. There were one compression fracture above the fused segment after 6 months follow-up and one case of seroma. But there were no postoperative complications related to bone cement leakage and pedicular screwings such as screw pullout or screw cut-up. Conclusion : Bone cement augmentation of pedicular screwing can be an effective procedure for osteoporotic lumbar spine in spondylolisthetic patients.

Introduction of Bong Chuna Manual Therapy (봉 추나요법의 개요)

  • Oh, Won-Kyo;Shin, Byung-Cheul
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.2 no.1
    • /
    • pp.99-114
    • /
    • 2007
  • Objectives : The purpose of this study was to introduce the Chuna Manual Therapy (CMT) using Bong (a type of stick which is called 'bong') as a part of Oriental Medicine. Methods : We searched several traditional methods of CMT using Bong, either individual contact to specialist of CMT using Bong or referred to publications, and summarized briefly for introduction. Authors also made a comparative study between existing CMT and CMT using the bong. Results & Conclusions : The indications of Bong CMT are regarded as acute or chronic pain syndrome, whiplash associated disorders, facet syndrome, vertebral misalignment, chronic fatigue syndrome, obesity and also lower extremity length difference caused by malalignment of vertebrae and pelvic bone. The Meridian Muscle Therapy by pressing down using the Bong can be carried out on the imbalances of the muscle by shortening and lengthening contraction. CMT with Bong is considered more effective than other existing CMT in terms of effectiveness. In the case of pelvic correction which needs a tremendous amount of force, it can reduce the force required effectively. This fact can be inferred by the theory of composition and decomposition of force during the transmission of power. We can perform Bong CMT feeling less fatigued subsequently than general CMT. Pressing down with flexed fingers to grip bong acts on the contraction of flexor digiti and extensor digiti muscle, this protects the $doctor^{\circ}{\emptyset}s$ wrist joints from injury. The bong which acts as a tool between the doctor and the patient, while being given treatment, absorbs and spreads out the direct impact from the patient to the doctor. CMT with Bong is able to apply to both existing massage therapies with the hand. The bong appliance can be used in all applications, particularly, but not limited to; Orthopedic and Manual Correction Therapy, Meridian Muscle Pressing, Exercise Therapy, and Meridian Point Manual Pressing Therapy. CMT with Bong belongs to the category of oriental rehabilitation and Chuna manual medicine.

  • PDF

The Clinical Experience of Computed Tomographic-Guided Navigation System in C1-2 Spine Instrumentation Surgery

  • Kim, Sang-Uk;Roh, Byoung-Il;Kim, Seong-Joon;Kim, Sang-Don
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.4
    • /
    • pp.330-333
    • /
    • 2014
  • Objective : To identify the accuracy and efficiency of the computed tomographic (CT)-based navigation system on upper cervical instrumentation, particularly C1 lateral mass and C2 pedicle screw fixation compared to previous reports. Methods : Between May 2005 and March 2014, 25 patients underwent upper cervical instrumentation via a CT-based navigation system. Seven patients were excluded, while 18 patients were involved. There were 13 males and five females; resulting in four degenerative cervical diseases and 14 trauma cases. A CT-based navigation system and lateral fluoroscopy were used during the screw instrumentation procedure. Among the 58 screws inserted as C1-2 screws fixation, their precise positions were evaluated by postoperative CT scans and classified into three categories : in-pedicle, non-critical breach, and critical breach. Results : Postoperatively, the precise positions of the C1-2 screws fixation were 81.1% (47/58), and 8.6% (5/58) were of non-critical breach, while 10.3% (6/58) were of critical breach. Most (5/6, 83.3%) of the critical breaches and all of non-critical breaches were observed in the C2 pedicle screws and there was only one case of a critical breach among the C1 lateral mass screws. There were three complications (two vertebral artery occlusions and a deep wound infection), but no postoperative instrument-related neurological deteriorations were seen, even in the critical breach cases. Conclusion : Although CT-based navigation systems can result in a more precise procedure, there are still some problems at the upper cervical spine levels, where the anatomy is highly variable. Even though there were no catastrophic complications, more experience are needed for safer procedure.

An Analysis of Paresthesia Areas Evoked by Spinal Cord Stimulation in Relation to the Position of Electrode Tip (척수자극기 전극의 위치에 따른 자극 부위에 대한 분석)

  • Lee, Mi Geum;Lee, Hyo Min;Jo, Ji Yon;Choi, Yun Suk;Ku, Ui Kyoung;Lee, Chul Joong;Lee, Sang Chul;Kim, Yong Chul
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.146-151
    • /
    • 2006
  • Background: Spinal cord stimulation is a well-established method for the management of several types of chronic and intractable pain. This form of stimulation elicits a tingling sensation (paresthesia) in the corresponding dermatomes. The goal of this study was to establish a correlation between the spinal levels of the implanted epidural electrodes and the paresthesia elicited due to stimulation of the neural structures. Methods: Thirty five patients, who received trial spinal cord stimulation, were evaluated. After the insertion of the lead to the selected position, the areas of paresthesia evoked by stimulation were evaluated. Results: Seventy-one percent of cases showed paresthesia in the shoulder area when the tip of the electrode was located between the C2⁣-C4 levels. At the upper extremities, paresthesia was evoked in 86⁣-93% of cases, regardless of the location of the electrode tip within the cervical spinal segments. The most common tip placement of the leads eliciting hand stimulation was at the C5 level. The most common level of electrode tip placement eliciting paresthesia of the anterior and posterior thigh and the foot were at the T7-⁣T12, T10⁣-L1 and T11-⁣L1 vertebral segments, respectively. Conclusions: Detailed knowledge of the patterns of stimulation induced paresthesia in relation to the spine level of the implanted electrodes has allowed the more consistent and successful placement of epidural electrodes at the desired spine level.

Variation of Paraspinal Muscle Forces according to the Lumbar Motion Segment Fusion during Upright Stance Posture (직립상태 시 요추 운동분절의 유합에 따른 척추주변 근력의 변화)

  • Kim, Young-Eun;Choi, Hae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • For stability analysis of the lumbar spine, the hypothesis presented is that the disc has stress sensors driving feedback mechanism, which could react to the imposed loads by adjusting the contraction of the muscles. Fusion in the motion segment of the lumbar spinal column is believed to alter the stability of the spinal column. To identify this effect finite element (FE) models combined with optimization technique was applied and quantify the role of each muscle and reaction forces in the spinal column with respect to the fusion level. The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Vertebral body and pelvis were modeled as a rigid body and the rib cage was constructed with rigid truss element for the computational efficiency. Spinal fusion model was applied to L3-L4, L4-L5, L5-S1 (single level) and L3-L5 (two levels) segments. Muscle architecture with 46 local muscles was used as acting directions. Minimization of the nucleus pressure deviation and annulus fiber average axial stress deviation was selected for cost function. As a result, spinal fusion produced reaction changes at each motion segment as well as contribution of each muscle. Longissimus thoracis and psoas major muscle showed dramatic changes for the cases of L5-S1 and L3-L5 level fusion. Muscle force change at each muscle also generated relatively high nucleus pressure not only at the adjacent level but at another level, which can explain disc degeneration pattern observed in clinical study.

Facet Joint Syndrome (추간관절 증후군)

  • Kang, Jeom-Deok
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • Anatomy: Facet joint syndrome most often affects the lower back and neck and refers to pain that occurs in the facet joints, which are the connections between the vertebrae in the spine that enable the spine to bend and twist. Many physicians have believed that the usual lesion of facet syndrome was an anatomical impairments of facet joint itself.. Facet joint injection using local anesthetics is a reliable method for the diagnosis and treatment for facet syndrome. Etiology: One of many possible causes is imbalances that can occur in stress levels, hormone levels, and nutritional levels. These imbalances can adversely affect posture, which can lead to neck and back pain. The common disorder called facet syndrome exhibits lower back pain, with or without, radiating pain to buttock and thigh due to facet joint arthropathy. Pain in the facet joint is supposedly the secondary effect of narrowing of joint space by sustained muscle contracture around joints. Syndrome: Facet joint syndrome tends to produce pain or tenderness in the lower back that increases with twisting or arching the body, as well as pain that moves to the buttocks or the back of the thighs. Other symptoms include stiffness or difficulty standing up straight or getting out of a chair. Pain can be felt in other areas such as the shoulders or mid-back area. Treatment: Non-drug treatments include hot packs, ultrasound, electrical stimulation, and therapeutic exercises. Stimulating blood flow using massage or a hot tub may also help. Alternative treatments include yoga and relaxation therapy. If your pain persists after trying these treatments, a surgical procedure called radiofrequency rhizotomy, which destroys the sensory nerves of the joint, may bring relief. Facet joint injection has been helpful in diagnosis and therapy for this facet syndrome. Radiofrequency thermocoagulation of medial branches is known to be an effective method of relieving pain caused by facet joint problems. We conclude that spasmolytic treatment of muscles connecting the two vertebral articular space would be better for treatment and diagnosis of facet syndrome rather than facet block with local anesthetic and steroid only.

  • PDF