• Title/Summary/Keyword: Ventilator-Induced Lung Injury

Search Result 12, Processing Time 0.028 seconds

Monitoring and Interpretation of Mechanical Ventilator Waveform in the Neuro-Intensive Care Unit (신경계 중환자실에서 기계호흡 그래프 파형 감시와 분석)

  • Park, Jin
    • Journal of Neurocritical Care
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • Management of mechanical ventilation is essential for patients with neuro-critical illnesses who may also have impairment of airways, lungs, respiratory muscles, and respiratory drive. However, balancing the approach to mechanical ventilation in the intensive care unit (ICU) with the need to prevent additional lung and brain injury, is challenging to intensivists. Lung protective ventilation strategies should be modified and applied to neuro-critically ill patients to maintain normocapnia and proper positive end expiratory pressure in the setting of neurological closed monitoring. Understanding the various parameters and graphic waveforms of the mechanical ventilator can provide information about the respiratory target, including appropriate tidal volume, airway pressure, and synchrony between patient and ventilator, especially in patients with neurological dysfunction due to irregularity of spontaneous respiration. Several types of asynchrony occur during mechanical ventilation, including trigger, flow, and termination asynchrony. This review aims to present the basic interpretation of mechanical ventilator waveforms and utilization of waveforms in various clinical situations in the neuro-ICU.

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.

Effects of Matrix Metalloproteinase Inhibitor on Ventilator-Induced Lung Injury in Rats (기계환기로 인한 백서의 급성 폐손상에서 Matrix Metalloproteinase Inhibitor의 효과)

  • Kim, Je-Hyeong;Park, Soo-Yeon;Hur, Gyu-Young;Lee, Seung-Heon;Lee, Sang-Yeub;Park, Sang-Myeon;Suh, In-Bum;Shin, Chol;Shim, Jae-Jeong;In, Kwang-Ho;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.619-634
    • /
    • 2002
  • Background : Many inflammatory mediators and collagenases are involved in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The increase of matrix metalloproteinase-9 (MMP-9, gelatinase-B) produced mainly by inflammatory cells was reported in many ALI models and connective tissue cells. In this study, the expression of MMP-9 in ventilator-induced lung injury (VILI) model and the effects of matrix metalloproteinase inhibitor (MMPI) on VILI were investigated. Methods : Eighteen Sprague-Dawley rats were divided into three groups: low tidal Volume (LVT, 7mL/Kg tidal volume, 3 $cmH_2O$ PEEP, 40/min), high tidal volume (HVT, 30mL/Kg tidal volume, no PEEP, 40/min) and high tidal volume with MMPI (HVT+MMPI) groups. Mechanical ventilation was performed in room air for 2 hours. The 20 mg/Kg of CMT-3 (chemically modified tetracycline-3, 6-demethyl 6-deoxy 4-dedimethylamino tetracycline) was gavaged as MMPI from three days before mechanical ventilation. The degree of lung injury was measured with wet-to-dry weight ratio and acute lung injury score. Expression of MMP-9 was studied by immunohistochemical stain with a mouse monoclonal anti-rat MMP-9 $IgG_1$. Results : In the LVT, HVT and HVT+MMPI groups, the wet-to-dry weight ratio was $4.70{\pm}0.14$, $6.82{\pm}1.28$ and $4.92{\pm}0.98$, respectively. In the HVT group, the ratio was significantly higher than other groups (p<0.05). Acute lung injury score measured by five-point scale was $3.25{\pm}1.17$, $12.83{\pm}1.17$ and $4.67{\pm}0.52$, respectively. The HVT group was significantly damaged by VILI and MMPI protects injuries by mechanical ventilation (p<0.05). Expression of MMP-9 measured by four-point scale was $3.33{\pm}2.07$, $12.17{\pm}2.79$ and $3.60{\pm}1.95$, respectively, which were significantly higher in the HVT group (p<0.05). Conclusion : VILI increases significantly the expression of MMP-9 and MMPI prevents lung injury induced by mechanical ventilation through the inhibition of MMP-9.

Critical Care Management Following Lung Transplantation

  • Jeon, Kyeongman
    • Journal of Chest Surgery
    • /
    • v.55 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Postoperative critical care management for lung transplant recipients in the intensive care unit (ICU) has expanded in recent years due to its complexity and impact on clinical outcomes. The practical aspects of post-transplant critical care management, especially regarding ventilation and hemodynamic management during the early postoperative period in the ICU, are discussed in this brief review. Monitoring in the ICU provides information on the patient's clinical status, diagnostic assessment of complications, and future management plans since lung transplantation involves unique pathophysiological conditions and risk factors for complications. After lung transplantation, the grafts should be appropriately ventilated with lung protective strategies to prevent ventilator-induced lung injury, as well as to promote graft function and maintain adequate gas exchange. Hypotension and varying degrees of pulmonary edema are common in the immediate postoperative lung transplantation setting. Ventricular dysfunction in lung transplant recipients should also be considered. Therefore, adequate volume and hemodynamic management with vasoactive agents based on their physiological effects and patient response are critical in the early postoperative lung transplantation period. Integrated management provided by a professional multidisciplinary team is essential for the critical care management of lung transplant recipients in the ICU.

Effect of Hypothermia on the Prevention of Ventilator-Induced Lung Injury in Rats (백서에서 저체온 전처치가 환기기유발폐손상 억제에 미치는 효과)

  • Lim, Chae-Man;Hong, Sang-Bum;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.540-548
    • /
    • 2001
  • Backgrounds : Because ventilator-induced lung injury is partly dependent on the intensity of vascular flow, we hypothesized that hypothermia may attenuate the degree of such an injury through a reduced cardiac output. Methods : Twenty-seven male Sprague-Dawley rats were randomly assigned to normothermia ($37{\pm}1^{\circ}C$)-injurious ventilation (NT-V) group (n=10), hypothermia ($27{\pm}1^{\circ}C$)-injurious ventilation (HT-V) group (n=10), or nonventilated control group (n=7). The two thermal groups were subjected to injurious mechanical ventilation for 20 min with peak airway pressure 30 cm $H_2O$ at zero positive end-expiratory pressure, which was translated to tidal volume $54{\pm}6\;ml$ in the NT-V group and $53{\pm}4\;ml$ in the HT-V group (p>0.05). Results : Pressure-volume (P-V) curve after the injurious ventilation was almost identical to the baseline P-V curve in the HT-V group, whereas it was shifted rightward in the NT-V group. On gross inspection, the lungs of the HT-V group appeared smaller in size, and showed less hemorrhage especially at the dependent regions, than the lungs of the NT-V group. [Wet lung weight (g)/body weight (kg)] ($1.6{\pm}0.1$ vs $2.4{\pm}1.2$ ; p=0.014) and [wet lung weight/dry lung weight] ($5.0{\pm}0.1$ vs $6.1{\pm}0.8$ ; p=0.046) of the HT-V group were both lower than those of the NT-V group, while not different from those of the control group($1.4{\pm}0.4$, $4.8{\pm}0.4$, respectively). Protein concentration of the BAL fluid of the HT-V group was lower than that of the NT-V group($1,374{\pm}726\;ug/ml$ vs $3,471{\pm}1,985\;ug/ml$;p=0.003). Lactic dehydrogenase level of the BAL fluid of the HT-V group was lower than that of the NT-V group ($0.18{\pm}0.10\;unit/ml$ vs $0.43{\pm}0.22\;unit/ml$;p=0.046). Conclusions : Hypothermia attenuated pulmonary hemorrhage, permeability pulmonary edema, and alveolar cellular injuries associated with injurious mechanical ventilation, and preserved normal P-V characteristics of the lung in rats.

  • PDF

Respiratory support with heated humidified high flow nasal cannula in preterm infants

  • Jeon, Ga Won
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.10
    • /
    • pp.389-394
    • /
    • 2016
  • The incidence of bronchopulmonary dysplasia (BPD) has not decreased over the last decade. The most important way to decrease BPD is by weaning the patient from the ventilator as soon as possible in order to reduce ventilator-induced lung injury that underlies BPD, and by using a noninvasive ventilator (NIV). Use of a heated, humidified, high flow nasal cannula (HHHFNC), which is the most recently introduced NIV mode for respiratory support in preterm infants, is rapidly increasing in many neonatal intensive care units due to the technical ease of use without sealing, and the attending physician's preference compared to other NIV modes. A number of studies have shown that nasal breakdown and neonatal complications were lower when using a HHHFNC than when using nasal continuous positive airway pressure (nCPAP), or nasal intermittent positive pressure ventilation. The rates of extubation failure during respiratory support were not different between patients who used HHHFNC and nCPAP. However, data from the use of HHHFNC as the initial respiratory support "after birth", particularly in extremely preterm infants, are lacking. Although the HHHFNC is efficacious and safe, large randomized controlled trials are needed before the HHHFNC can be considered an NIV standard, particularly for extremely preterm infants.

Clinical Utility of Pre-B-Cell Colony-Enhancing Factor in Bronchoalveolar Lavage Fluid of Acute Critical Ill Patients with Lung Infiltrates (폐 침윤을 동반한 급성 중증 환자의 기관지 폐포 세척액에서 측정한 Pre-B-Cell Colony-Enhancing Factor의 임상적 유용성)

  • Lee, Kwangha;Hong, Sang-Bum
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.5
    • /
    • pp.402-408
    • /
    • 2009
  • Background: Pre-B-cell colony enhancing factor (PBEF) has been suggested as a novel biomarker in sepsis and acute lung injury. We measured the PBEF in bronchoalveolar lavage (BAL) fluid of acute critically ill patients with lung infiltrates in order to evaluate the clinical utility of measuring PBEF in BAL fluid. Methods: BAL fluid was collected by bronchoscope from 185 adult patients with lung infiltrates. An enzyme-linked immunosorbent assay was then performed on the collected fluids to measure the PBEF. Results: Mean patient age was 59.9 ${\pm}$14.5 years and 63.8% of patients were males. The mean concentration of PBEF in BAL fluid was 17.5 ${\pm}$88.3 ng/mL, and patients with more than 9 ng/mL of PBEF concentration (n=26, 14.1%) had higher Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores on the BAL exam day. However, there were no significant differences in clinical characteristics between survivors and non-survivors. In patients with leukocytosis (n=93) seen on the BAL exam day, the linear regression analysis revealed a significant, positive relationship between PBEF and APACHE II ($r^2$=0.06), SOFA score ($r^2$=0.08), Clinical Pulmonary Infection Score ($r^2$=0.05), and plateau pressure in patients on ventilators ($r^2$=0.07) (p<0.05, respectively). In addition, multivariate regression analysis with PBEF as a dependent variable showed that the plateau pressure ($r^2$=0.177, p<0.05) was correlated positively with PBEF. Conclusion: The PBEF level in the BAL fluid may be a useful, new biomarker for predicting the severity of illness and ventilator-induced lung injury in critically ill patients with lung infiltates and leukocytosis.

Clinical Year in Review 2014: Critical Care Medicine

  • Lee, Jeong Moon;Lee, Heung Bum
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • Severe sepsis is the most common cause of death among critically ill patients in non-coronary intensive care units. In 2002, the guideline titled "Surviving Sepsis Campaign" was published by American and European Critical Care Medicine to decrease the mortality of severe sepsis and septic shock patients, which has been the basis of the treatment for those patients. After the first revised guidelines were published on 2008, the most current version was published in 2013 based on the updated literature of until fall 2012. Other important revised guidelines in critical care field such as 'Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit' were revised in 2013. This article will review the revised guidelines and several additional interesting published papers of until March 2014, including the part of ventilator-induced lung injury and the preventive strategies.

Evaluation of Respiratory Parameters in Patients with Acute Lung Injury Receiving Adaptive Support Ventilation (급성 폐손상 환자에서 Adaptive Support Ventilation 적용 시 호흡지표의 양상)

  • Lee, Keu-Sung;Chung, Wou-Young;Jung, Yun-Jung;Park, Joo-Hun;Sheen, Seung-Soo;Hwang, Sung-Chul;Park, Kwang-Joo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • Background: Adaptive support ventilation (ASV), an automated closed-loop ventilation mode, adapts to the mechanical characteristics of the respiratory system by continuous measurement and adjustment of the respiratory parameters. The adequacy of ASV was evaluated in the patients with acute lung injury (ALI). Methods: A total of 36 patients (19 normal lungs and 17 ALIs) were enrolled. The patients' breathing patterns and respiratory mechanics parameters were recorded under the passive ventilation using the ASV mode. Results: The ALI patients showed lower tidal volumes and higher respiratory rates (RR) compared to patients with normal lungs ($7.1{\pm}0.9$ mL/kg vs. $8.6{\pm}1.3$ mL/kg IBW; $19.7{\pm}4.8$ b/min vs. $14.6{\pm}4.6$ b/min; p<0.05, respectively). The expiratory time constant (RCe) was lower in ALI patients than in those with normal lungs, and the expiratory time/RCe was maintained above 3 in both groups. In all patients, RR was correlated with RCe and peak inspiratory flow ($r_s$=-0.40; $r_s$=0.43; p<0.05, respectively). In ALI patients, significant correlations were found between RR and RCe ($r_s$=-0.76, p<0.01), peak inspiratory flow and RR ($r_s$=-0.53, p<0.05), and RCe and peak inspiratory flow ($r_s$=-0.53, p<0.05). Conclusion: ASV was found to operate adequately according to the respiratory mechanical characteristics in the ALI patients. Discrepancies with the ARDS Network recommendations, such as a somewhat higher tidal volume, have yet to be addressed in further studies.

Successful Use of Extracorporeal Membrane Oxygenation for Severe Lung Contusion and Stress-induced Cardiomyopathy Caused by Multiple Trauma (다발성 외상으로 인한 심한 폐 좌상과 스트레스성 심근병 환자에서 체외막형 산화기의 치료 경험)

  • Lee, Dae-Sang;Gil, Eun Mi;Lee, A Lan;Ha, Tae Sun;Chung, Chi-Ryang;Park, Chi-Min;Cho, Yang Hyun
    • Journal of Trauma and Injury
    • /
    • v.27 no.4
    • /
    • pp.229-232
    • /
    • 2014
  • A 55 year-old man hit a vehicle while riding a bicycle. He was diagnosed as left hemopneumothorax, multiple rib fracture, cerebral hemorrhage, and skull fracture. Initially he suffered from hypoxia requiring 100% oxygen with a mechanical ventilator. Finally he became hypotensive. Venovenous extracorporeal membrane oxygenation (ECMO) was initiated to support patient's gas exchange. Because hypotension and left ventricular dysfuction persisted, we converted the mode of support to veno-arterio-venous ECMO. Over four days of intensive care, we could wean off ECMO. The patient went to rehabilitation facility after 45 days of hospitalization. Although trauma and bleeding are considered as relative contraindication of ECMO, careful decision making and management may enable us to use ECMO for trauma-related refractory heart and/or lung failure.