• Title/Summary/Keyword: Ventilation window system

Search Result 63, Processing Time 0.028 seconds

Development of Smart Kiosk for Controlling and Monitoring (제어 및 모니터링을 위한 스마트 키오스크 개발)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.160-164
    • /
    • 2022
  • In this paper, through the development of a smart panel (LCD kiosk) controller, contents to develop a system that can be operate in a desired environment by operating the window control and ventilation facilities according to the automatic controller operation based on the set values such as temperature, humidity, sunlight, and rainfall. In particular, the MQTT protocol-based sensor module can be directly manufactured and applied at any time based on various communication and power sources such as wireless, wired, and PLC (power line communication) to obtain the desired data, as well as fire, power failure, and intrusion in the house. It is also a system that enables operation and monitoring from a remote location based on the cloud environment by connecting sensors. Kiosks are currently being used in many places, and the demand for them is on the rise, and an active influx of young people can be expected through environmental improvement. It is expected to increase interest and understanding for improvement.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

A Study on the Actual Conditions of Indoor Air Quality of Underground Dwellings and the Automatic Ventilating Fan Operated by CO2 Controller and Timer (지하주거의 실내공기환경 실태조사와 CO2 조절기 및 타이머에 의한 환기팬 자동운전에 관한 연구)

  • Kwon, Young Cheol;Park, Jin Chul
    • KIEAE Journal
    • /
    • v.8 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The rapid urbanization after 1970s caused the shortage of dwellings in urban areas. As the result, the underground dwellings were developed to compensate for the insufficient dwelling spaces. While the underground dwellings have some advantage in the respect of thermal and acoustic environment, they usually have the basic problems in the indoor air quality because of the lack of natural ventilation through small window areas. The purpose of this study is to investigate and to improve the indoor air quality of underground dwellings. Thirty Units in Seoul and Gyung-Gi Province were investigated into the indoor environmental conditions. For the purpose of the improvement of their indoor air quality, Automatically-operated ventilating fan was installed in a sample unit which has worst indoor environmental condition. Then the indoor air quality was monitored when it was operated by $CO_2$ control system and timer. Finally economic feasibility study was made considering the effect of the improvement of indoor air quality. The extra cost for installing timer could be paid back only in 10 months, so timer-installed automatic fan is recommended to improve the indoor air quality of underground dwellings.

Energy Saving Effect of ERV(Energy Recovery Ventilator) with Economizer Cycle - Focused on the School Buildings - (Economizer cycle을 채용한 전열교환형 환기시스템의 에너지 절감 효과 분석 -국내 학교를 대상으로-)

  • Kim, Joo-Wook;Park, Jae-Hyung;Song, Doo-Sam;Chu, Euy-Sung;Kwon, Young-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.695-700
    • /
    • 2009
  • Maintaining an IAQ with fresh in school building is very important because the good IAQ can be possible to improve the academic performance. Since school buildings are very dense and require a lot of fresh air, the need for ERV(Energy Recovery Ventilator) has become obvious. While opening a window does provide ventilation, the building's heat and humidity will then be lost in the winter and gained in the summer, both of which are undesirable for the indoor climate and for energy efficiency. ERV technology offers an optimal solution: fresh air, better climate control and energy efficiency. However, when the outdoor air condition is favorable to control the indoor environment such as spring and autum in Korea, heat exchange in ERV would rather increase the cooling load than diminish. Economizer cycle control which using the outdoor air in controlling the indoor thermal environment has many benefit in terms of energy saving and IAQ control. In this study, the ERV with economizer cycle control will be suggested. And then the system control characteristics and energy saving effect will be analyzed through the TRSNSYS Simulation.

  • PDF

Development of an Integrated Controller to the Control Vertical Agitation Heater and Facilities (수직교반히터 및 시설물 제어를 위한 통합 제어기 개발)

  • Kim, Jin-Ha;Yoo, Seung-Hyeok;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.753-758
    • /
    • 2020
  • In this paper, we intend to develop a control system that can apply the developed vertical stirring heater to the facility house and control the other facilities (circulating fan, ventilation fan, window using a switching motor, ceiling, and dehumidification). Through this, it is intended to increase the cultivation efficiency of crops and improve storage environment of crops held by non-heated storage or storage warehouses to increase the storage period and freshness. In addition, ICT monitoring technology is added to enable users to easily solve problems when there is a problem due to changes in the cultivation and storage environment with Real Time Control (RTC).

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Environmental Control of Plant Production Factory Using Programmable Logic Controller and Computer (PLC와 컴퓨터를 이용한 식물생산공장의 환경제어)

  • Kim Dong-Eok;Chang Yu-Seob;Kim Jong-Goo;Kim Hyeon-Hwan;Lee Dong-Hyeon;Chang Jin-Taek
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This study was conducted to develop a system and an control algorithm for control the environment of a plant factory. The greenhouse control system for environmental control was largely composed of a computer and a PLC. The screen of control program was composed of a greenhouse figure which was included machinery and equipments for greenhouse, the graph of environmental factors of inside greenhouse and the image of greenhouse. In order to reduce temperature change, the operation time of ventilation window was changed by 3 stage according to difference between a target and present temperature. When is heating, a temperature variation was shown to be $16.7{\pm}0.8^{\circ}C$. When is cooling, a temperature variation was shown to be $23.1{\pm}0.6^{\circ}C$. When is humidifing, a humidity variation was shown to be $39.3{\pm}1.6^{\circ}C$ %RH. An environmental control system and a control algorithm were proved that it was shown a good performance in a control accuracy. So a computer control system should be adapted to a control system of a greenhouse and a plant factory.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.