• Title/Summary/Keyword: Ventilation velocity

Search Result 292, Processing Time 0.026 seconds

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments (초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안)

  • Lee, Yong-Ho;Kim, Seong-Yong;Hwang, Jung-Ha;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

The Influence of Wind Conditions on the Performance of Smoke Ventilation in High-rise Building Fires (초고층건물 화재시 외기바람이 배연성능에 미치는 영향)

  • Kim, Beom-Gyu;Yim, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • This study examined the effects of the wind conditions, such as wind velocity and wind directions, on the performance of the mechanical smoke exhaust systems for high-rise building fires. A scaled model design and CFD simulations were used to verify the effects both quantitatively and qualitatively. The results showed that the smoke exhaust velocity of the mechanical exhaust system can be reduced by up to 17% at a wind velocity of 5 m/s (equivalent to an outdoor wind speed of 16 m/s) and a wind direction of ${\theta}=5^{\circ}$. In addition, the angle of the outdoor wind direction below ${\theta}=25^{\circ}$ had a significantly influence on the smoke exhaust flow rate and reduced exhaust performance of the smoke exhaust system in a fire.

A Study on the Velocity Profiles and Pressure Distributions in Ejector Linking Inhale Duct (흡입관이 부착된 이젝터의 속도분포와 압력분포 연구)

  • Lee Heang-Nam;Park Gil-Moon;Lee Duck-Gu;Sul Jae-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.488-494
    • /
    • 2005
  • The ejector is used to obtain a vacuum state, and it has been applied to a lot of industry field such as a heat engine, a fluid instrument power plant. a food industry, an environment industry etc., because there is no problem even it is mixed with any kind of liquid, gas. and solid. The flow characteristics in the ejector was investigated by a PIV and a CFD. The agreement between numerical analysis and experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating. ventilation. air conditioning and wastewater purification plants.

Development of Environmental Control Systems for Windowless Pig-housing (I) - Assessment of Control Performance - (무창돈사의 환경제어 시스템 개발 (I) - 제어성능의 평가 -)

  • 장홍희;장동일;임영일
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.415-424
    • /
    • 1999
  • This study was conducted to assess performances of the developed environmental control systems under various seasons of Korea. In all trials for the environmental control systems, the manure pit ventilation system in the windowless pig-housing with partly slatted floor was used. Consequently, under all seasons of Korea, the complex environmental control systems could comfortably maintain the indoor temperature (14.8~27.2$^{\circ}C$) , concentrations of noxious gases (CO2 gas : 631~1,874ppm, NH3 gas : 0.3~3.2ppm), air velocity (0.11~0.23m/s), air movement, and so on. Therefore, the performances of the complex environmental control systems were evaluated as proper as the intended.

  • PDF

Behavior of Electric Transmission Tower with Rock Anchor Foundation (암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF

Numerical Analytic Study on Internal Flow Characteristics of a PCV valve (PCV 밸브 내부 유동특성에 관한 수치해석적 연구)

  • Lee, Jong-Hoon;Lee, Yeon-Won;Kim, Jae-Hwan
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.111-116
    • /
    • 2005
  • An automobile engine has the Positive Crankcase Ventilation system (PCV system) for preventing air pollution as the environmental problem is important In this system, a PCV valve is the most important component to control the flow rate of Blowby gas which is generated by various engine powers. But, in the working place, the design of a PCV valve is very difficult because of interaction between fluid and solid motions. In this study, we investigated fluid flow characteristics using re-meshing method of a CFD technique to simulate spool behavior. As the results, a spool is periodically oscillated with time and is largely oscillated in proportion to the differential pressure between inlet and outlet. And, although the velocity at the orifice increases with the differential pressure, the flow rate of the outlet decreases. This research may give PCV designers visual flow information to help them

  • PDF

A Study on Thermal Environment of 3-Dimensional Room with Side Wall Exhaust (측면 유출구를 갖는 3차원 실내 공간내의 열환경에 관한 연구)

  • 정용현;김종렬;최광환;금종수;정효민
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.423-429
    • /
    • 1999
  • This study was performed to investigate the fluid flow characteristics, the temperature distribution, humidity and PMV(Predicted Mean Vote of thermal sensation) distributions of the 3-dimensional room with side wall exhaust. The finite volume method and turbulence k-$\varepsilon$ models with the SIMPLE computational algorithm are used. As the results of the three dimensional simulations, the region of exceeding Y=1.5m was high temperature and humidity. The inlet velocity and temperature were influenced to the floor strongly, and the room PMV was about -1.0 except the inlets.

  • PDF

The Study for Evaluation of thermal comfort in office on offshore (해양플랜트 사무공간의 공조 쾌적성 평가에 관한 연구)

  • Lim, Hongseok;Kim, Panjung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.67-72
    • /
    • 2017
  • This paper presents on the evaluation of thermal comfort in office on offshore. In living quarter of offshore, strict air conditioning performance is required to office on offshore and displacement ventilation is applied to office space which rooms are required to confirm the thermal environment. The computational fluid dynamics (CFD) is performed to calculate the temperature, air velocity in office and thermal comfort such as PPM & PPD is evaluated by the CFD result.

  • PDF

Numerical and Experimental Analysis of Tunnel Flow Induced by Jet Fan (제트홴에 의해 형성되는 터널내 유동의 실험 및 수치적 해석)

  • Kim, Jung-Yup;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.59-64
    • /
    • 2010
  • To analyze the three-dimensional flow in tunnel caused by operation of jet fan, both experimental and computational studies have been conducted. The experimental analysis of tunnel flow induced by jet fan is conducted on a real-scale apparatus with jet fan and tunnel, and air velocity at the monitoring points is measured for variation of fan's RPM. The three-dimensional numerical analysis including tunnel and jet fan is carried out for the same geometric configuration as the experimental analysis. The experimental and computational results are compared to examine the applicability of the numerical method.