• Title/Summary/Keyword: Ventilation velocity

Search Result 293, Processing Time 0.026 seconds

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

A Numerical Study on Characteristics of Smoke Exhaust in Road Tunnel Fires for Different Ventilation System (터널 화재 시 환기 방식에 따른 배연 특성의 수치해석 연구)

  • Kim, Jong-Yoon;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2008
  • In this study, three Dimensional CFD simulations were carried out to investigate the effective smoke extraction system in bi-directional road tunnel fires using FLUENT. Characteristics of transverse system with big size extraction port or with uniform extraction port, semi-transverse system and longitudinal system for smoke extraction system were analyzed. Air velocity, port size, and operating method were used with variable. Distributions of smoke spread, CO was analyzed. As a result, the transverse ventilation system with big size port was found to be more effective than the uniform ports for bi-directional road tunnel.

Numerical Study on the Validity of Scaling Law for Compartment Fires (구획 화재의 상사 법칙 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this study, to assess the validity of scaling law which was based on the ventilation factor and utilized in fields of compartment fires, numerical simulations were conducted on full- and 2/5 reduced-scale compartment fires using FDS and simulation results were compared with the previously published experimental data. The numerical modeling used in this study was verified by comparing the predicted temperature at several points of the upper layer with the experiment data. Temperature and concentration distribution inside of compartments and velocity profile at door of compartment are analyzed to assess the validity of scaling law. Comparison between the predicted results on the full- and reduced-scale compartments shows good agreements on the inner compartment flow patterns, outflowing flame patterns from the compartments, and vertical temperature distributions.

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

Flow Characteristics of Rectangular Space with Asymmetric Inlet and Outlet (비대칭 입출구를 갖는 장방형공간의 유동특성)

  • Lee, Cheol-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.261-266
    • /
    • 2006
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model by visualization equipment with laser apparatus. Four different kinds of measuring area were selected as experimental condition Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system and its software adopting two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counter-clockwise forced-vortex rotation at center area.

  • PDF

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

Exceedance probability as a tool to evaluate the wind environment of urban areas

  • Bady, Mahmoud;Kato, Shinsuke;Ishida, Yoshihiro;Huang, Hong;Takahashi, Takeo
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.455-478
    • /
    • 2008
  • The present study aims to estimate the wind ventilation performance for pedestrian level domains from the air quality point of view. Three typical models of a dense urban area were considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics, which in turn affect the air quality, within the pedestrian domain of a street canyon located within this area. The calculated flow fields were employed to estimate the exceedance probabilities within the study domain using a new approach: air exchange rate within the domain. The study has been applied to nine cities in Japan: Tokyo, Osaka, Sapporo, Niigata, Fukuoka, Nagoya, Sendai, Yokohama, and Kyoto, based on their mean wind velocity data. The results demonstrated that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool during the design stage of inhabited areas for the evaluation of pollutant-removal efficiency by the applied wind. Also, the calculated probabilities demonstrated substantial dependence on both the geometry of building arrays and the wind conditions of the nine cities.

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

A Numerical Study on the Particle Collection Characteristics of a Grease Filter for Kitchen Ventilation (주방환기용 그리스 필터의 입자포집 특성에 관한 수치해석)

  • 김기정;배귀남;김영일;허남건
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.792-800
    • /
    • 2002
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. This numerical study has been conducted to investigate the particle collection characteristics of a grease filter having nominal flowrate of $100m^3$/h. The flow field and particle trajectories in the grease filter with a flow chamber were simulated by using the commercial code of STAR-CD. The air velocity and pressure distributions were discussed in detail. The pressure drop of a grease filter rapidly increases with increasing the air flowrate. The numerical values of the pressure drop are slightly lower than the experimental values when the air flowrates are 50, 75, and 100㎥/h. The particle collection efficiency of a grease filter increases with increasing the particle diameter, the particle density, and the air flowrate, which means that the inertial impaction is a dominant particle removal mechanism in a grease filter. The cut-off diameter of the tested grease filter representing 50-% collection efficiency is about 11.6$\mu$m for water droplets at $100m^3$/h.

A Numerical Study on Automobile Interior Environment (자동차 실내 환경에 관한 수치적 연구)

  • Lee, Kum-Bae;Jean, Hee-Ho;Ko, Seok-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.325-330
    • /
    • 2006
  • Modern people spend more and more time in an automobile in their daily life. In this life, drivers and passengers should create HVAC environment in the automobile interior which is not only for convenient transportation but also give comfortable feeling with dwelling culture. Also, the latest cars give much importance for the role of HVAC system that controls the environment of the area for passengers more than just basic capability. There are solar radiant heat, surface temperature, refrigeration system(temperature, humidity, air current, velocity), and dust for the factor which have an effect on the HVAC environment in the automobile interior, also these are being carried for the HVAC environment delivered an individual character. In this study, we drew the automobile interior as three dimension and arranged a method of numerical analysis on HVAC environment in the automobile interior displaying air current distribution and temperature distribution through simulation of the automobile interior on the ventilation volume and outlet area. The aim of this study is to develop the estimated method for HVAC environment. in the automobile interior.

  • PDF