• Title/Summary/Keyword: Ventilation effect

Search Result 647, Processing Time 0.024 seconds

Investigation of Bending Stiffness of Porous Shell Structures Fabricated by 3D Printing (3차원 프린팅으로 제작된 다공성 박판 구조물의 굽힘강성 고찰)

  • Lim, Yeong-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.491-497
    • /
    • 2017
  • In recent years, 3D printing has received increasing attention due to its potential for direct fabrication beyond the traditional rapid prototyping. 3D printing has the advantage of being able to manufacture complicated shapes that were thought impossible to produce by traditional manufacturing processes. This advantage has driven applications of 3D printing to direct manufacturing of functional parts, such as lightweight structures and component integration. In this study, a porous shell structure is designed for the purpose of weight reduction and ventilation. Finite element (FE) analyses are performed to compare the effective stiffness of the porous structure with the conventional solid structure. Structural reinforcements are also considered in order to make up the stiffness reduction due to the porosity, and the relevant FE analyses are performed to investigate the effect of the reinforcement design on the bending stiffness. The optimized reinforced structure is then proposed through response surface analysis.

The Characteristics of Persimmon Juice Dyeing Using Padding and UV Irradiation Method (Part I) -Color and Properties of Persimmon Juice Dyed Cotton Fabrics- (패딩과 자외선 조사법을 이용한 감즙 염색 특성(제1보) -감즙 염색 면직물의 염색성과 물성-)

  • 한영숙;이혜자;유혜자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.795-806
    • /
    • 2004
  • Unripe indigenous persimmons which contain rich tannins have been used as natural dye materials traditionally and have been using continuously for dyed clothes named Gal-ot in Jeju. Those persimmons were cheap and easy to use as dyes because of inedible and widely cultured in Korea. Persimmon juice dyes not only make fabrics brown-color but also give functional and hygienic properities such as stiffness, air ventilation of clothes, antibacterial activity, protectivity against ultraviolet light. However there are several serious problems which are ristriction of dyeing periods, longtime irradiation, uneven color and low color fastness etc. in persimmon juice dyeing. This study purpose to improve dye effect and method in order to enlarge useability of persimmon juice dyeing. Cotton fabrics were pad-dyed to 100% pick-up using padding machine after dipping in persimmon juice extracted from unripe persimmons indigenous from Jeju. It was possible and available to control pick-up rate. The color of dyed cotton fabrics by padding method was more even and repeatable than which by traditional hand method. Persimmon juice concentrations were 4 types of 10, 25, 50 and 100%. The more concentration increased, the more color deepened. UV Irradiation instead of sunlight was applied to color developing. Irradiation times were shortened till 1∼8 hrs. Same color values could be taken without water wetting which were required in sunlight irradiation. Tensile strengths of cotton fabrics pad-dyed with low concentration of persimmon juice decreased but recovered at high concentrations. Elongations(%) of cotton fabrics pad-dyed with persimmon juice were increased 1% more than undyed cotton in sunlight irradiation. Drape stiffness increased upto double times as much as.

A Study on the Effect of Photocatalyst Coating to Improve the Indoor Air Quality in Buildings (건축물 실내 공기질 향상을 위한 광촉매 코팅 효과에 관한 연구)

  • Park, Hyeon-Ku;Kim, Jong-Ho;Go, Seong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.150-157
    • /
    • 2006
  • Sick Building Syndrome (SBS) is an illness symptom such as irritation of eyes, skin eruption and vomit ing in newly constructed buildings. It is mainly due to the harmful gases from the materials installed in building such as Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), floating bacteria, fungi, fungal spores and viruses, human bioeffluents in many modem buildings. The general ways to improve the Indoor Air Quality (IAQ) are ventilating, utilizing eco-material without harmful gases and reducing or removing harmful gases through additional treatment to the building materials. This study aimed to improve the Indoor Air Quality(IAQ) by applying surface coating on the building materials and to make safe living environments through the analysis of air quality before and after surface coating treatment in buildings.

An Experimental Study on the Effect of Hanji Windows on Indoor Air Temperature and Humidity Control (한지창호의 실내 온.습도 조절효과에 관한 실험적 연구)

  • Jang Gil-Soo;Park Sa-Keun;Song Min-Jeong;Shin Hoon
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.125-134
    • /
    • 2006
  • The tightness of windows have devoted to the improvement of thermal insulation and energy saving in buildings. But it is known that this tightness causes some side effects such as low ventilation, low capacity to humidity and temperature control and these are not profitable for inhabitants. To act on these side effects, Korean traditional windows which are composed of Han-Ji(Koreand traditional paper) and Chang-Sal(Korean traditional wooden frame) have been studied to get a reasonable solutions for these problems. In this study, to compare the thermal and humidity control performance of current window(12 mm pair) and Korean traditional windows, frames which are made of existing window and Korean traditional windows are adapted to scale model house and then humidity and temperature of in and out of scale model house are measured and analysed. The results of this study are followings ; 1) When Korean traditional window charges 20cm(1/8 of total window area) from total window area, Han-Ji window has higher thermal insulation than that of existing window in daytime. There is the most big thermal difference when double faced with double-ply Han-Ji window is placed to mock-up house. In night-time, the temperature difference is very small so this means that Korean traditional window is good to cover direct sunlight in daytime and reduce the temperature of balcony. One faced with one-ply han-Ji window has the best humidity penetration performance among three type of Korean traditional windows. 2) When Korean window area enlarged to 40cm(1/4 of total window area), the function of 40cm width Han-Ji window is higher than that of 20cm's. This means that enlargement of Han-Ji window cover direct sunlight more and is more efficient in humidity penetration.

IAQ improvement effect analysis in Dynamic Breathing Building(DBB) (숨쉬는 벽체를 적용한 건물에서의 실내공기질(IAQ) 개선 효과 분석)

  • Park, Yong-Dai;Lee, Jin-Sook;Kang, Eun-Chul;Lee, Euy-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.748-753
    • /
    • 2008
  • In modern buildings, the air-tightness and insulation for energy saving resulted in degradation of Indoor Air Quality(IAQ). It has brought out new diseases such as New Building Syndrome(NBS) and Sick Building Syndrome(SBS) to the tenants of such buildings. As a result, researches on the Dynamic Breathing Building(DBB) are being undertaken to minimize energy loss as well as to improve IAQ. DBB is a state-of-the-art technology to build channels inside the wall so that air migrates between indoor and outdoor, which improves insulation performance and IAQ. This study attempts to evaluate the improvement of DBB employed in real buildings. As analyzing tools, IAQ improvement and particle degradation while were evaluated while the required indoor ventilation rate was satisfied. DBB were installed in the twin test cells at Korea Institute of Energy Research(KIER). From the test, IAQ was compared with outdoor air base on the concentration of particle matter(PM10). As a results, the concentration of particle dust (PM10) within the breathing walls was reduced by 80% at 0.7 ACH, 67% at 2 ACH, 63% at 3 ACH respectively. As ACH is higher, Dnamic Isulation(DI) and normal wall permit more PM10 particles being infiltrated.

  • PDF

Effect of Seizure on Prognosis in Acute Endosulfan Intoxication (급성 endosulfan 중독환자에서 경련이 예후에 미치는 영향)

  • Han, Byung-Gon;Lee, Jun-Ho;Lee, Kyung-Woo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • Purpose: In highly doses, endosulfan lowers the seizure threshold and elicits central nervous system stimulation, which can result in seizures, respiratory failure, and death. Management of seizure control is essential for survival and prognosis of intoxicated patients. This study assessed whether seizure time was an independent predictor mortality in patients with endosulfan poisoning. Methods: This retrospective study enrolled patients with endosulfan poisoning presenting to Masan Samsung Hospital and Gyeongsang National University Hospital from January 2003 to December 2008. The data were collected from clinical records and laboratory files. Using a multivariate logistic analysis, data on the total population was retrospectively analyzed for association with mortality. Results: Of the 24 patients with endosulfan poisoning, nineteen (79.1%) experienced seizure. The patients in the seizure group showed significantly lower Glasgow coma scale score, base excess, bicarbonate, and significant existence of mechanical ventilation, as compared to the non seizure group (n=5). Seizure, Glasgow coma scale score, systolic blood pressure, bicarbonate level, need for respiratory support, pulse rate, respiratory rate, pH, base excess, and seizure time were associated with mortality. The fatality rate of endosulfan poisoning was 54.1% with higher mortality among patients experiencing. Longer seizure time was associated with higher mortality. Conclusion: Seizure time can be a significant independent predictor of mortality in patients with acute endosulfan poisoning. Physicians should aggressively treat for seizure control in patients with acute endosulfan poisoning.

  • PDF

Case Study of a Field Test for a Smoke Control System Using Sandwich Pressurization (샌드위치 가압을 이용하는 연기제어 시스템의 현장실험 사례 연구)

  • Kim, Jung-Yup;Ahn, Chan-Sol
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.87-92
    • /
    • 2016
  • Amid the growing number of high-rise complex buildings in Korea, efficient smoke prevention technology in a fire is required and as an alternative of a mechanical smoke control system in high-rise buildings, the use of a smoke control system using sandwich pressurization has been on the rise. In such a system, the appropriate pressure difference and the data for designing the air supply and exhaust flow rate are necessary to prevent the spread of smoke and offer a tenable evacuation environment. As part of such effort, this paper presents a field test process and result after testing a building where such a smoke control system using sandwich pressurization has been installed. A ventilation rate of 6 cycles per hour were applied to simulate the air exhaust flow rate on a fire floor and the air supply flow rate on the floors above and below the fire floor. As a result of the system operation, pressure difference of approximately 260 Pa between the 12th floor of a fire and the 13th floor was generated. The over pressure of the experiment has a serious effect on the evacuation or fire compartment so that it is necessary to examine the improvement.

Intelligent and Responsive Window Opening-Closing Operation Process for Carbon Dioxide(CO2) Management of Secondary School Classroom (중등학교 교실의 이산화탄소(CO2) 관리를 위한 지능형 창호개폐 작동 프로세스)

  • Choi, Yoon-Young;Lee, Hyun-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.19-30
    • /
    • 2018
  • The school classroom is a common living place where students spend 7 to 14 hours a day to prepare for their careers. Therefore, if the ventilation of the classroom is not properly performed, it may lead to the deterioration of learning ability due to the unclear air. The concentration of carbon dioxide in the classroom is reported to be high, and the increase in carbon dioxide concentration has a negative effect on the learner's academic performance. In this context, the purpose of this study is to propose a methodology for intelligent and responsive window opening-closing operation process that can reduce the concentration of $CO_2$ in the classroom in order to build a support space that can create an effective teaching-learning environment for adolescents. The specific objectives are as follows. First of all, we define the concept of window opening-closing operation. Secondly, twe develop the operation process of window opening-closing. Thirdly, we develop an algorithm for real-time window opening and closing (process) (Window Opening-Closing Operation Process). Finally, we verify the intelligent responsive window opening-closing operation process through developing examples of window opening-closing operation process using the parametric design program. This study is a preliminary study to develop algorithms necessary for window opening-closing operation. Based on the first-order algorithm, We simulated window opening-closing operations according to a hypothetical scenario. As a result, This study can show that the window is open and close depending on the $CO_2$ concentration, but the $CO_2$ concentration in the room is higher than outdoors. Consequentially, we suggest that it is necessary to develop an algorithm to supplement these results because window is often not working when the temperature difference between indoor and outdoor in winter is large.

Improvement of Indoor Air Quality by Coating of Indoor Materials of $TiO_2$ Photocatalyst Sol (이산화티탄 광촉매 졸(sol)의 실내환경 코팅에 의한 실내공기질 개선)

  • 양원호;김대원;정문호;양진섭;박기선
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.92-97
    • /
    • 2004
  • Three methods for VOCs emissions control in indoor air are reduction at the source, ventilation between indoor and outdoor, and removal. The best alternative should be to replace highly emitting sources with sources having low emissions, but the pertinent information on VOCs is not always available from manufactures. Other ways of improving indoor air quality are needed. It is to increase the outside fresh-air flow to dilute the pollutants, but this method would generally provide only a dilution effect without destruction in residence. An ideal alternative to existing technologies would be a chemical oxidation process able to treat large volumes of slightly contaminated air at normal temperature without additional oxidant such as ozone generator and ion generator. Photocatalytic oxidation(PCO) represents such a process. It is characterized by a surface reaction assisted by light radiation inducing the formation of superoxide, hydroperoxide anions, or hydroxyl radicals, which are powerful oxidants. In comparison with other VOCs removal methods, PCO offers several advantages. The purpose of this study was to explore the possibilities for photocatalytic purification of slightly contaminated indoor air by using visible light such as flurescent visible light(FVL). In this study, a PCO of relatively concentrated benzene using common FVL lamps was investigated as batch type and total volatile organic compounds(TVOCs) using a common FVL lamp and penetrated sun light over window. The results of this study shown the possibility of TiO$_2$ photocatalyst application in the area of indoor air quality control.

Successful High Flow Nasal Oxygen Therapy for Excessive Dynamic Airway Collapse: A Case Report

  • Park, Jisoo;Lee, Yeon Joo;Kim, Se Joong;Park, Jong Sun;Yoon, Ho Il;Lee, Jae Ho;Lee, Choon-Taek;Cho, Young-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.4
    • /
    • pp.455-458
    • /
    • 2015
  • Excessive dynamic airway collapse (EDAC) is a disease entity of excessive reduction of the central airway diameter during exhalation, without cartilage collapse. An 80-year-old female presented with generalized edema and dyspnea at our hospital. The patient was in a state of acute decompensated heart failure due to pneumonia with respiratory failure. We accordingly managed the patient with renal replacement therapy, mechanical ventilation and antibiotics. Bronchoscopy confirmed the diagnosis of EDAC. We scheduled extubation after the improvement of pneumonia and heart condition. However, extubation failure occurred due to hypercapnic respiratory failure with poor expectoration. Her EDAC was improved in response to high flow nasal oxygen therapy (HFNOT). Subsequently, the patient was stabilized and transferred to the general ward. HFNOT, which generates physiologic positive end expiratory pressure (PEEP) effects, could be an alternative and effective management of EDAC. Further research and clinical trials are needed to demonstrate the therapeutic effect of HFNOT on EDAC.