• Title/Summary/Keyword: Ventilation Type

Search Result 472, Processing Time 0.034 seconds

A Study ono the Type-Change of Automotive Register (차내 환기구 형상변화에 대한 연구)

  • Kim, Jong-Won;Youn, Jong-Gap;Bae, Han;Won, Sung-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.123-134
    • /
    • 1999
  • Nowadays since the automobile is regarded as the third living space, comfortable conditions are required in the passenger compartment. The customer's concern on air-conditioning/heating, ventilation and demisting/defrosting performances has been much increased. Both ventilation and demisting /defrosting performances are directly influenced by register location, shape of regist guide vane, ventilation flow rate, air distribution , and air circulation pattern. Diffuse plume of air from the register is desirable not only to maintain comfort when the comfort when the comfortable condition has been satisfied but to improve demisting /defrosting performance. In this study, experimental and numerical investigation about the flow field of six different register vane types were carried out , respectively. The numerical analysis, based upon the $textsc{k}$-$\varepsilon$ turbulence model , was applied to the air flow field. The results show that the shape of register guide vane should be considered as an important design paramter.

  • PDF

An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window (창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가)

  • Sung, Uk-Joo;Cho, Soo;Song, Kyoo-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system (Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석)

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

Mechanical Properties of Heat Exchanger Element with Higher Capacity Waste Heat Recovery PDC Clean Ventilation System (대용량 폐열회수 PDC청정 환기시스템용 열교환 소자의 기계적 특성)

  • Ahn, S.H.;Nam, K.W.;Ahn, B.H.;Kim, D.G.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • Recently, the higher capacity waste heat recovery PDC clean ventilation system has a tendency which is increasing due to the excellent energy reduction in factory, big building, and so on. This system was developed to complement the room environment which is deteriorated. However, the researches and technologies about this system were not well studied. Specially, the characteristic for heat exchanger element used to this system were not well known. Therefore, this study was carried out to evaluate the mechanical properties of the heat exchanger element as the core parts compose of this system. From results, tensile strength and elongation of the plate type heat exchanger element had about 10.11~14.32 kgf/$mm^2$ and 8.0~16.2%, respectively.

  • PDF

Development of Air Cleaning System for Railroad Vehicles (차세대 객차용 청정시스템 개발)

  • Park, Duck-Shin;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2109-2113
    • /
    • 2008
  • As the standard of living is higher, the passengers using public transportations desire better qualities of environment as well as more comfortable indoor environment. In case of train, the passengers' comfort in passenger cabin is one of the most important elements to be competitive with other transport systems. The indoor air quality of the cabin should be managed properly, because many passengers travel for a long time in the small space of $144\;m^3$. For proper management of the air quality, the heating, ventilation and air conditioning (HVAC) system is required for the ventilation of the compartment. To maintain comfortable environment in the compartment, the automatic ventilation system is needed to exchange the indoor air with fresh air or clean indoor air. In this study, we investigated the indoor air quality (PM-10, $CO_2$, and VOCs) in the compartment of train. In addition, type and pattern of PM-10 has been analyzed through the clustering analysis. Based on the analysis, we could found that the fine particulate matters in the compartment can be a serious hazard to human. To control the concentration of PM-10 and $CO_2$ air cleaners were developed. Through this study, it is expected that people who take a train will be in a more comfortable environment.

  • PDF

A Study on Improvement of Industrial Hood in Ventilation System for Elimination of Harmful Material and Dust (유해물질 및 공업용 분진 제거를 위한 산업용 후드 개선에 관한 연구)

  • Kim, Young-Sun;Oh, Yool-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • This study investigates on the improvement of inhalation effect of hood which attached new device named as "gas-guide-device" in local exhaust ventilation system for the effective elimination of harmful material and dust in manufacturing factory. The gas-guide-device having a diamond shape is composed of width (b) and two sides of a device (X, Y) and its size is selected the industrial hood under application in manufacturing factory after due consideration. In order to investigate the effect of gas-guide-device, numerical and experimental study is performed that the flow velocity is calculated and is measured by a commercial program "COMSOL $Multiphysics^{TM}$" and a hot wire type of anemometer, respectively. The numerical and experimental results are revealed is a similar pattern and flow velocity has improved to hood attached gas-guide-device. Also, the numerical method and result is also verified the dependance. Moreover, the optimum shape and size of gas-guide-device is revealed that the width (b) and the ratio of two sides of gas-guide-device (X, Y) has 125mm and 4 to 6.

Development of safety system for Road Tunnel - The study of Quantitative risk assessment for middle scale road tunnel with natural ventilation system - (도로터널 방재시스템 개발 - 자연환기를 수행하는 중규모 도로터널의 정량적 위험도평가관한 연구 -)

  • Yoo, Ji-Oh;Shin, Hyun-Jun;Kim, Jong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.67-70
    • /
    • 2008
  • As a part of the project on road tunnel fire safety system development, Quantitative Risk Assessment program was developed. In this study, We carried out Quantitative Risk Assessment with this program by using a factor of cross passage interval, warning announcement time and congestion ratio etc for 1km tunnel with natural ventilation. In the case of 250m below of cross passage interval, Risk value due to warning announcement time was a slightly changed. but if cross passage interval is more than 250m, expected fatalities in the same HRR(heat release rate) was sharp increased. As a result, Quantitative Risk Assessment program which was developed in this research project is possible to risk assessment with ventilation type, cross passage for evacuation and detection system response property etc. hereafter, this program look forward to use as a tool for road tunnel performance based design.

  • PDF

A study of low-level $CO_2$ adsorption using dry sorbents (건식 흡착제를 이용한 저농도 이산화탄소 흡착 연구)

  • Kim, Yo-Seop;Lee, Ju-Yeol;Lim, Yun-Hui;Shin, Jae-Ran;Park, Byung-Hyun;Kim, Yoon-Shin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.394-401
    • /
    • 2014
  • In order to minimize a building energy consumption with ventilation, a development of smart ventilation system is very important. In this study, a dry adsorbent that is main element of smart ventilation system was developed for removing indoor $CO_2$, and evaluate the adsorption performance. Specific surface area, pore characteristic and crystal structure of the modified sorbent was measured to analyze physical properties. From this analysis, it was found that the developed absorbent has a low specific surface area, due to mesopores of substrate was filled with metal contained raw material. Additionally, through analysis of the adsorption properties, the developed adsorbent was shown a adsorption form of mesopore (type IV), which means adsorption amount was rapidly increased at the part of high-pressure. Order to applying for the field, chamber test was performed. Continuous column tests (2,500 ppm) and batch chamber tests ($4m^3$, 5,000 ppm) showed $CO_2$ removal efficiency of 95% and 88% within 1 hour, respectively.

A Study on the Safety Improvement by CFD Analysis for Packaged Type Hydrogen Refueling System (CFD 툴을 활용한 패키지형 수소충전시스템의 안전성 향상 연구)

  • HWANG, SOON-IL;KANG, SEUNG-KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • In this study, to ensure the safety of the packaged hydrogen refueling system, the improvement plan was derived by using 3-dimensional CFD program (FLACS). We also confirmed the effectiveness of risk reduction and the suitability of safety standard. By ventilation performance evaluation according to the position of the vent, it demonstrated that the vent should be installed at the ceiling to safely ventilate without stagnation of the leaked gas. In case of ventilation system according to KGS standard, risk situation could be resolved after about 5 minutes in the worst leaked condition. The result showed that jet fire and explosion inside the packaged system could affect the surrounding facilities. This proves that the standard for installing flame detectors, emergency shut down system and protection wall is appropriate.