• Title/Summary/Keyword: Ventilation Load

Search Result 166, Processing Time 0.032 seconds

Estimating Door Open Time Distributions for Occupants Escaping from Apartments

  • Hopkin, Charlie;Spearpoint, Michael;Hopkin, Danny;Wang, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms.

Prediction of the Fire Behavior According to the Fire Load in an Underground Life Space (화재하중에 따른 지하생활공간의 화재성상 예측)

  • Chae, Han-Sik;Suk, Chang-Mok;Kim, Ie-Sung;Lee, Ji-Hee;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.51-59
    • /
    • 2007
  • The purpose of this study is analyzing the fire behavior according to the fire load for G underground shopping mall located in Daegu city. when predict fire behavior, fire load and ventilation coefficient are important factor who dominate fire temperature or fire continuance time. Therefore, size of unit room, opening size and inflammable investigated on the field. Fire load calculated using unit calorific value by each material of inflammable that investigate. And reduction model experimented fire load about 6 models with variable. Fire behavior analyzed by heat flows of inside space that temperature rise and temperature change by time of fire source.

An Examination of Load Cut-off Effect Using Modern Buildings in Korean Traditional Passive Methods

  • Kim, Hwan-yong;Song, Young-hak;Kim, Hyemi
    • Architectural research
    • /
    • v.19 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Recently, as a new perspective to view the architecture in relation to global environmental problems, interest in environmental architecture that conforms to the surrounding environment and nature with nature has been expanded as a part of the natural ecosystem, rather than seeing the building as an independent entity. Traditional Korean architecture creates a comfortable indoor environment by appropriately using the natural energy around, ranging from the arrangement of the building and the space composition to the use of detailed materials and to harmonize the artificial architectural environment without harming the natural ecosystem. The purpose of this study is to propose a method to apply the environmental control techniques of traditional buildings to modern buildings. As a research method, the characteristics of Korean traditional buildings according to the climatic characteristics of Korea were recognized through existing literature data and when applied to methods of traditional buildings, ventilation systems, control through eaves, and humidity control using Hanji the effect of energy load control on traditional buildings was analyzed and identified through existing literature. After analyzing the problems of modern architecture, we analyzed the effect of the environmental control system of traditional architecture on modern architecture. Simulation results show that the application of the environmental control system of traditional buildings to modern buildings reduces the cooling and heating load of modern buildings and has an effect on humidity control. This study suggests that quantitative energy saving will be possible if the environmental control techniques of traditional buildings are appropriately applied to modern buildings.

The Effects of Job Stress on Workers' Physiological Somatic Complaints (직무스트레스가 근로자들의 신체적 불편감에 미치는 영향)

  • Lee, Jong-Eun;Jung, Hye-Sun;Lee, Bok-Im;Kim, Soon-Lae
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.2
    • /
    • pp.289-297
    • /
    • 2004
  • Purpose: This study was conducted to determine factors affecting workers' physiological somatic complain using the Job Stress Model proposed by the National Institute for Occupational Safety and Health (NIOSH). Method: Data were collected from the 1st to the 30th of December 1999. The subjects were 2.123 workers employed at 155 work sites. Collected date were analyzed through SAS/PC program. Result: According to individual characteristics, younger and women groups showed significantly higher physiological somatic complaint than elder men groups. By work condition, groups with higher physiological somatic complaint included workers of irregular shift work. Dark lighting, improper temperature in winter, improper ventilation, inappropriate humidity, unpleasant work environment and crowded work place were significantly related with physiological somatic complaint. By work-related factor, physiological somatic complaint was high in those with higher variance in work load, quantitative work load, role conflict, job burden, role ambiguity and future ambiguity. On the other hand, physiological somatic complaint was low in those with little underutilization of ability. As for the relationships between physiological somatic complaint and non-work related factors, physiological somatic complaint was high in workers who had a side job, were bringing up infants alone, cleaned the house alone, cared for the elderly and disabled persons, were studying, were volunteering at another organization, and were spending 5-10 hours in religious activities per week. Physiological somatic complain was in significantly negative correlations with overall social support, supervisory support and family support, but in significantly positive correlations with co-worker support. Conclusion: The main predictors of physiological somatic complain were gender, shift work pattern, overtime work, ventilation, role ambiguity, role conflict, future ambiguity, job control, variance in work load, overall social support, worker with side job, worker who cleans the house alone, worker who is studying. These predictors explained 19.10% of the total variance of physiological somatic complain.

  • PDF

A Study on the Period of Optimum Defrost of Auto Defrost Unit by the Forced Fan Evaporator (강제 송풍 증발기에 의한 자동제상장치의 최적제상시기에 관한 연구)

  • 구남열;이윤경;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.329-335
    • /
    • 2003
  • This study is on a experiment which shows to defrost automatically on the optimum time regardless of defrosting method. The result shows that the more defrost layers increase in fin tubes of evaporation, the less the section of the circulating air reduce. Thickness of the frost formation increases, so a pressure difference of ventilation increase, as a result automatic defrosting system sets the time COP drops suddenly up optimum time. Automatical defrosting system can find out the initial related current of evaporator fan motor and the value of load current in the optimum time. And it sets defrosting time, evaporating temperature, and temperature in refrigerator up system requiring value. Consequence of this experiment is that energy consumption with defrost load gets effect of reduction of eleven percent per 25.4 hours compared with common defrosting.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Field Survey and Analysis of Natural Ventilation Characteristics of Multi-span Greenhouse with Different Roof Vent (연동형 비닐하우스의 환기창 형태 조사 및 자연환기 효과 분석)

  • Park, Min jung;Choi, Duck kyu;Son, Jin kwan;Yoon, Sung-Wook;Kim, Hee tae;Lee, Seung-Kee;Kang, Dong hyeon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • The objectives of this study were to investigate the standard and roof vent type of multi-span greenhouse and to analyze the characteristics of natural ventilation of multi-span greenhouse with different roof vent using computational fluid dynamics (CFD) code. The vent area proportion of surveyed farms averaged 10%, it was analyzed that the vent design for natural ventilation is insufficient. The results of natural ventilation efficiency of multi-span greenhouse according to roof vent type showed that the temperature of the position in which the crops grew was the lowest in the conical roof vent type and the highest in the half conical roof vent type. For the natural ventilation effect, the conical roof vent type was the best one, but the structural stability should be evaluated in light of wind load.

Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation (물-공기 히트펌프 시스템의 부분부하 난방운전 특성)

  • Cho, Yong;Lee, Nam Young;Kim, Yong Yeol;Kim, Dea Geun;Jung, Eung Tai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

Behavior of Electric Transmission Tower with Rock Anchor Foundation (암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF