• Title/Summary/Keyword: Ventilation Effects

Search Result 443, Processing Time 0.026 seconds

Application of Ventilation Corridor to Mitigate Particulate Matter for the Sejong-Si (미세먼지 저감대책으로서 바람길 적용 방안 : 세종시를 대상으로)

  • Nam, Seongwoo;Sung, Sunyong;Park, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • The purpose of this study is to verify the effects of ventilation corridor and derive adequate policy alternatives to its application for the city of Sejong, which is located in an inland of Korean Peninsula. In order to introduce the ventilation corridor in the city, it is necessary both to understand change on fresh air flow affected by the construction of new cities and to show its effects which are able to circulate air flow of the city. The study identified ventilation effects using computational fluid dynamics models. In particular, it analyzed change on wind speed and direction after constructing of a new town and cool air flow along the lowlands generated after sunset. In addition, it identified those of reducing particulate matter when arranging buildings conforming to the ventilation corridor at block level. The policy implications derived from simulation can be summarized as follows. First, it is desirable to plan ventilation corridors so that fresh air from mountains, forests, and valleys can flow into cities and mitigate the concentration of particulate matter. Furthermore, public facilities covering parks, plazas, and playgrounds should be installed preferentially to attract safe outdoor activities near to areas with low levels of particulate matter. Finally, it is adequate to prepare for a number of alternative plans by analyzing ventilation corridors when setting out district unit plan.

Effects of Ventilation Condition and Ventilating Hole Sizes to Improve Quality Onion(Allium cepu. L) under Room Temperature (양파 간이저장시 통풍조건 및 통풍구 재료의 크기가 저장에 미치는 영향)

  • 이찬중;김희대;정은호;김우일;서전규
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.356-361
    • /
    • 2001
  • This study was conducted to improve the storability of onion bulbs by assembly simple house storage and the reduce the rotteness caused by field open storage. Allium cepa cv. Changnyungdeago, late strain was used for the test at the storage condition of natural ventilation of levels 2, forced ventilation of levels 2, field open storage and 75mm, 100mm, and 125mm ventilating holes. Mean tamperature and relative humidity were not significantly different by ventilation conditions. Mean temperature was lower in forced ventilation than that of in natural ventilation and non-ventilation, and relative humidity was a little higher in ventilation treatment than those of the others. Weight loss of onion bulbs were 2.5%, 2.9%, 3%, 4.3% in field open storage, non ventilation, natural ventilation of levels 2 and forced ventilation of levels 2 respectively. Rotting rate in natural ventilation of levels 2 and farced ventilation of levels 2 were 27.7% and 25.4% respectively but 34.6% and 37.8% in non ventilation and field open storage. Therefore, the treatment of ventilation reduced the rotteness of storage onion bulbs. The smaller the size of a ventilating hole, the lower mean temperature was maintained. The relative humidity was some high in July, but didn’t showed significantly difference in August and September. With small size of a ventilating hole, the strong wind velocity was obtained, and wind velocity by position was weaker in the middle part than both ends. Rutting rates in 75㎜, 100㎜, and 125㎜ ventilating holes were 17.9%, 15.3% and 14.1% respectively.

  • PDF

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.

Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 수치연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2130-2138
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading characteristics in railway tunnels with the rescue stations. Experiments were carried out for n-heptane pool fires with a square length 4 cm at different fire locations, and the heat release rates (HRR) were obtained by the measurement of burning rates. In addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

  • PDF

Study on Energy Saving Possibilities through Analysis of Environment Control Elements & Natural Ventilation Performance using the CFD & Measurement (CFD와 실측을 이용한 환경제어요소 도입 및 주택 자연환기 성향 검토를 통한 에너지 절감가능성 고찰)

  • Oh, Byoungchull;Lee, Sunyoung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • Heat island is caused by changes of land coverage structure of cities and use of energy in buildings. As a result energy use in buildings get to increase further followed by rising of GHG emission and deteriorating climate change. Eco-friendly housing complex is a kind of plan that applies environmental control elements like water and green spaces to housing complex. With these methods, it can be expected to create thermal environment of indoor and outdoor. In this paper quantitative examination is studied on using CFD to find out the effects of river, water permeable, parks and planting on thermal environment. And by comparing field measurements with CFD results which are aimed to development phase housing complex, feasibility and usability of the CFD analysis results are confirmed. And also, analysis on the ventilation performance followed by natural ventilation system is analyzed by selecting one building in housing complex. Based on the results, the possibilities of energy reduction through making thermal environment and applying natural ventilation are studied. With these outcomes, creating thermal conditions and using natural ventilation would be contributed to GHG reduction.

The Ventilation Plane Due to Smoke Driving Combined Forces in Super High-Rise Buildings (초고층 건물에서 연기이동 복합력에 의한 환기계획)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.82-87
    • /
    • 2016
  • The ventilation system for the efficient operation of the building services systems in the ventilation plan of super high-rise buildings is used to combine smoke control systems. This study evaluated models of super high-rise buildings with four basement levels and 59 stories and investigated the pressure distribution of each floor by the smoke driving forces by numerical analysis. The smoke driving forces on the building of analytical model was analyzed to determine the effects of the ventilation plan and smoke control plane. In addition, when a combination with ventilation and smoke control of the kitchen ventilation damper in the ventilation plan of analysis model building was designed based on the these results, the relationship between the opening and closing force of the damper and smoke driving combined forces to act on the design pressure of the damper by a motion analysis simulation. The driving units of the damper were selected from the analytical results.

Development of a Ventilation Model for Mushroom House Using Adiabatic Panel

  • Kim Kee Sung;Han Jin Hee;Kim Moon Ki;Nam Sang Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, a ventilation model was developed to determine a ventilation rate for the balance of heat, moisture and $CO_{2}$ in a mushroom house. Internal and external temperature, relative humidity and $CO_{2}$ concentration were measured and used to validate the ventilation model. The effects of various environmental factors on physiological responses of mushroom were also investigated. The verified model was simulated under the observed ventilation rates with a difference of$ 0.001{\~}0.065\;m^{3}{\cdot}S^{-1}$ (relative error of $0.3{\~}18.9\%$) when external temperature varied 22.5 to $24.8^{circ}C$ and average ventilation rates was $0.35m^{3}{\cdot}S^{-1}$. The optimal conditions for mushroom growth (internal temperature $22 ^{circ}C$, relative humidity $80\%$, $CO_{2}$ concentration 1,000 ppm) were used for the model application with external temperature, relative humidity and $CO_{2}$ concentration of $27.5{\~}33.5^{circ}C$, $60\%$, and 355 ppm, respectively. Thermal balance was a important factor for an optimum ventilation up to the external temperature of $32^{circ}C$, while $CO_{2}$ concentration balance was more important over $32^{circ}C$. This suggests that humidification for moisture balance is required to maintain temperature and $CO_{2}$ concentration at an optimal level by ventilation in a mushroom house.

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

Measurements and CFD Analysis for Release Rate of CO2 and Characteristics of Natural Ventilation in Lecture Room (강의실 CO2 발생률과 자연환기 특성의 측정 및 CFD 분석)

  • Lee, Donghae;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • Lecture rooms are crowded with many attendees. Moreover, they rely significantly on the natural ventilation through windows for removing and controlling indoor contaminants such as CO2. With the aim of broadening the understanding of the characteristics of natural ventilation phenomena in lecture rooms, the average individual CO2 release rates of attendees were measured during the course of a lecture and compared with previously reported CO2 release rates. In addition, the effects of natural ventilation through windows on the time-variant CO2 concentrations in the center of the lecture room were measured and analyzed. Moreover, details about the overall and regional CO2 concentrations, as well as the air flows in the lecture room, were simulated and analyzed with computational fluid dynamics software, Fluent 2020 R2. It was found that the average individual CO2 release rates were slightly slower than previously reported rates. The local CO2 concentrations in the lecture room for regions with a high density of attendees increased over a short period of time, although the natural ventilation was already started by opening the windows. The overall CO2 concentration in the lecture room rapidly decreased in the early stage of ventilation, but declined very slowly after a longer period of ventilation time. Therefore, in order to enhance the efficiency of a lecture room's natural ventilation, it is recommended to homogeneously distribute the attendees in the lecture room, and to frequently open the windows for short periods of time.

A Case Study on the Economic Analysis for a New Technology-Based Ventilation System Using LCC Technique (LCC기법을 이용한 신기술 환기시스템의 경제성 분석에 관한 사례연구)

  • Choi, Hyun-Keun;Hwang, Seong-Su;Kim, Yong-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.143-150
    • /
    • 2004
  • The purpose of this study is to assess economic effects for a new technology-based ventilation system. The study has been performed using LCC technique for the economic analysis. Data for LCC analysis are collected from estimation and interview of estimators and maintenance experts of buildings. Based on the LCC analysis, the economic effect of a new technology-based ventilation system has been predicted as follows: for the investment during 15 years of study period, (1) return rate for the investment is 9.3 times. (2) 7.3% of LCC saving is predicted.