• Title/Summary/Keyword: Ventilated hydrofoil

Search Result 2, Processing Time 0.018 seconds

Bubble size characteristics in the wake of ventilated hydrofoils with two aeration configurations

  • Karn, Ashish;Ellis, Christopher R;Milliren, Christopher;Hong, Jiarong;Scott, David;Arndt, Roger EA;Gulliver, John S
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • Aerating hydroturbines have recently been proposed as an effective way to mitigate the problem of low dissolved oxygen in the discharge of hydroelectric power plants. The design of such a hydroturbine requires a precise understanding of the dependence of the generated bubble size distribution upon the operating conditions (viz. liquid velocity, air ventilation rate, hydrofoil configuration, etc.) and the consequent rise in dissolved oxygen in the downstream water. The purpose of the current research is to investigate the effect of location of air injection on the resulting bubble size distribution, thus leading to a quantitative analysis of aeration statistics and capabilities for two turbine blade hydrofoil designs. The two blade designs differed in their location of air injection. Extensive sets of experiments were conducted by varying the liquid velocity, aeration rate and the hydrofoil angle of attack, to characterize the resulting bubble size distribution. Using a shadow imaging technique to capture the bubble images in the wake and an in-house developed image analysis algorithm, it was found that the hydrofoil with leading edge ventilation produced smaller size bubbles as compared to the hydrofoil being ventilated at the trailing edge.

NUMERICAL ANALYSIS OF VENTILATED CAVITATION WITH FREE SURFACE EFFECTS (자유표면 영향을 고려한 환기공동 전산유동해석)

  • Jin, M.S.;Kim, H.Y.;Ha, C.T.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • Cavitating flow is usually formed on the surface of a high speed underwater object. When a object moves near a free surface at very high speed, the cavity signature becomes one of the major factors to be overcome by sensors of military satellite. The present work was to study the free surface effect on the ventilated cavitation. The governing equations were Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used an implicit preconditioning method in the curvilinear coordinate system. The cavitation model used here was the one first presented by Merkle et al.(2006) and redeveloped by Park & Ha(2009). Computations considered the free surface effects were carried out with a NACA0012 hydrofoil and the corresponding results were compared with the experimental data to have a good agreement. Calculations were then performed considering the ventilated cavitation, including the effect of non-condensable gas under the free surface effects.