• Title/Summary/Keyword: Vent

Search Result 556, Processing Time 0.03 seconds

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.

Investigation on Design Requirements of Vent Lines for Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 배출배관 설계요건 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.388-403
    • /
    • 2018
  • We investigated design requirements of vent lines for Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We developed design requirements of areas of the rupture disks of the steam generator, a diameter of the gas vent line of the sodium dump tank, a diameter of the gas vent line of the water dump tank, a diameter of the water dump line of the steam generator. With the design requirements, we calculated the time to vent fluid inside the steam generator and analyzed the transient pressure behavior, also evaluated the close pressure value of the isolation valve of the water dump line. Our results are expected to be used as basis information to design Sodium-Water Reaction Pressure Relief System of Prototype Generation IV Sodium-Cooled Fast Reactor.

Analysis on Internal Airflow of a Naturally Ventilated Greenhouse using Wind Tunnel and PIV for CFD Validation (CFD 검증을 위한 풍동 및 PIV를 이용한 자연환기식 온실 내부 공기유동 분석)

  • Ha, Jung-Soo;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.391-400
    • /
    • 2014
  • The number of large scale greenhouses has recently been increasing to cope with mass consumption of agricultural product. Korean government announced a new development plan for constructing greenhouse complex in reclaimed lands for the purpose of improvement in exports and activation of domestic market of agricultural product. Wind environment in the reclaimed land is totally different from that of inland area, and it can give a strong influence on ventilation performance of naturally ventilated greenhouse facilities. In this study, internal airflow analysis of naturally ventilated greenhouse built on a reclaimed land was conducted using wind tunnel and PIV for validation research. Later, the PIV measured results will be used to improve the accuracy of 3 dimensional CFD simulation in the future. Wind profile at a reclaimed land was produced using ESDU program and it was applied to the wind tunnel. The calculated error was only 5% and 0.96 of correlation coefficient, implying that the computed profiles were designed properly. From the measured results, when external wind speed changed from $1m{\cdot}s^{-1}$ to $1.5m{\cdot}s^{-1}$, air velocities inside the greenhouse which PIV measured were also increased proportionately in case of both side vent open and side-roof vent open. Considering reduced ratio of air velocity inside the greenhouse, it was measured a minimum of 40% in case of side vent and 30% in case of side-roof vent compared with external wind speed from each vent type. From the quantitative and qualitative PIV analysis, the PIV measured results indicated that there were well ventilated and stagnant areas in the greenhouse according to external wind condition as well as ventilation design.

Investigation on Design Requirements of Feed Water Drain and Hydrogen Vent Systems for the Prototype Generation IV Sodium Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 급수배출 및 수소방출 설계 요건 연구)

  • Park, Sun Hee;Ye, Huee-Youl;Lee, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.170-179
    • /
    • 2017
  • We investigated design requirements of feed water drain and hydrogen vent systems for the sodium-water reaction pressure relief system (SWRPRS) of the prototype generation IV sodium cooled fast reactor (PGSFR). We evaluated the areas of the gas vent pipe of the water dump tank and the length of the water drain pipe of the steam generator to rapid drain of the water steam inside the steam generator for the normal and refueling operations, respectively. We also calculated the diameter of the gas vent pipe of the sodium dump tank which met its design pressure.

Corrosion Failure Analysis of Air Vents Installed at Heat Transport Pipe in District Heating System (지역난방수 공급관 에어벤트 부식 파손 분석)

  • Lee, Hyongjoon;Chae, Hobyung;Cho, Jeongmin;Kim, Woo Cheol;Jeong, Joon Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.189-195
    • /
    • 2020
  • Two air vents situated on a heat transport pipe in district heating system were exposed to the same environment for 10 years. However, one air vent was more corroded than the other. It also had a hole on the top of the front-end pipe. Comparative analysis was performed for these air vents to identify the cause of corrosion and establish countermeasures. Through experimental observation of the damaged part and analyses of powders sampled from air vents, it was found that corrosion was initiated at the top of the front-end pipe. It then spread to the bottom. Energy dispersive X-ray spectroscopy results showed that potassium and chlorine were measured from the corroded product in the damaged air vent derived from rainwater and insulation, respectively. The temperature of the damaged air vent was maintained at 75 ~ 120 ℃ by heating water. Rainwater-soaked insulation around the front-end pipe had been hydrolyzed. Therefore, the damaged air vent was exposed to an environment in which corrosion under insulation could be facilitated. In addition, ion chromatography and inductively coupled plasma measurements indicated that the matrix of the damaged front-end pipe contained a higher manganese content which might have promoted corrosion under insulation.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Eruptive mechanisms and processes at Udo tuff cone, Udo Island, Korea (우도응회과의 분출기기구와 분출과정)

  • Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Eruptive mechanisms and processes at Udo tuff cone can be inferred from indicative characters of products, bedforms and lithofacies, and ring faults. In terms of bedforms and lithofa-cies in particular, massive lapilli tuff beds and chaotic lapilli tuff beds are derived from subaerial falls of aggregated tephra of wet tephra finger jets, occurring dominantly at the lower sequences of proximal part at the tuff cone. Crudely stratified lapilli tuff are derived from subaerial falls of slightly aggregated tephra of less wet tephra finger jets, whereas reversely graded lapilli tuff beds are from slightly disaggregated subaerial falls of continuous uprush. Both beds frequently occur in the middle sequences at proximal and near medial part of the tuff cone. Block and lapilli tephra lenses, ash-coated lapilli tephra beds(lenses) and thin-bedded tuff beds are derived from extremely disaggregated subaerial falls of dry tephra in the continuous uprush, frequently occurring at the upper sequences of medial part at the tuff cone. Udo tuff cone is a basaltic volcano emergent through the sea water surface while water could flood across or into the vent area. Emergence of the tuff cone was from the type-Surtseyan eruption characterized by earlier tephra finger jets and later continuous uprush columns of tephra with copious volumes of steam. Explosions began when boiling of wter produced a bubble column reducing the hydrostatic pres-sure, allowing exsolution of gases from the magma. This expansion of magma into a vesiculating froth fragmented the magma and permitted mixing of magma and water so that a more vigorous generation of steam could proceed. Tephra finger jetting explosions continued to build the crater rims, then remove water from the vent that their deposits flowed like slsurries until the continuous uprush explosion ensued. Continuous uprush explosions were associated with most rapid accumula-tion of tephra. The increasing volume rate led to partial removal of water from the vent area by the newly tephra ring so that more vigorous activity could be attended by a reducing water supply. This might restrain surplus of cold water entering the vent and thus enhance the vigour of the eruption by allowing optimal heat exchange. Eventually the crater became so deep and unsuported that piecemeal sliding, or massive subsidence on indipping ring faults, filled and closed the vent, and the cycle of explosions and collapse began anew.

  • PDF

Association between Medical Costs and the ProVent Model in Patients Requiring Prolonged Mechanical Ventilation

  • Roh, Jiyeon;Shin, Myung-Jun;Jeong, Eun Suk;Lee, Kwangha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.166-172
    • /
    • 2019
  • Background: The purpose of this study was to determine whether components of the ProVent model can predict the high medical costs in Korean patients requiring at least 21 days of mechanical ventilation (prolonged mechanical ventilation [PMV]). Methods: Retrospective data from 302 patients (61.6% male; median age, 63.0 years) who had received PMV in the past 5 years were analyzed. To determine the relationship between medical cost per patient and components of the ProVent model, we collected the following data on day 21 of mechanical ventilation (MV): age, blood platelet count, requirement for hemodialysis, and requirement for vasopressors. Results: The mortality rate in the intensive care unit (ICU) was 31.5%. The average medical costs per patient during ICU and total hospital (ICU and general ward) stay were 35,105 and 41,110 US dollars (USD), respectively. The following components of the ProVent model were associated with higher medical costs during ICU stay: age <50 years (average 42,731 USD vs. 33,710 USD, p=0.001), thrombocytopenia on day 21 of MV (36,237 USD vs. 34,783 USD, p=0.009), and requirement for hemodialysis on day 21 of MV (57,864 USD vs. 33,509 USD, p<0.001). As the number of these three components increased, a positive correlation was found betweeen medical costs and ICU stay based on the Pearson's correlation coefficient (${\gamma}$) (${\gamma}=0.367$, p<0.001). Conclusion: The ProVent model can be used to predict high medical costs in PMV patients during ICU stay. The highest medical costs were for patients who required hemodialysis on day 21 of MV.

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc (통가열도 TA 25 해저산의 열수변질)

  • Cho, Hyen Goo;Kim, Dong-Ho;Koo, Hyo Jin;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.169-181
    • /
    • 2014
  • Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

A Study on the Shock Wave Caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.