• Title/Summary/Keyword: Velocity sensor

Search Result 825, Processing Time 0.026 seconds

MICROPHONE-BASED WIND VELOCITY SENSORS AND THEIR APPLICATION TO INTERACTIVE ANIMATION

  • Kanno, Ken-ichi;Chiba, Norishige
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.596-600
    • /
    • 2009
  • We are developing a simple low-cost wind velocity sensor based on small microphones. The sensor system consists of 4 microphones covered with specially shaped wind screens, 4 pre-amplifiers that respond to low frequency, and a commercial sound interface with multi channel inputs. In this paper, we first present the principle of the sensor, i.e., technique to successfully suppress the influence of external noise existing in the environment in order to determine the wind velocity and the wind direction from the output from a microphone. Then, we present an application for generating realistic motions of a virtual tree swaying in real wind. Although the current sensor outputs significant leaps in a measured sequence of directions, the interactive animations demonstrate that it is usable for such applications, if we could reduce the leaps to some degree.

  • PDF

Sound Absorption Measurement by Using Micro-Flown Velocity Sensor (Mciro-flown 속도센서를 이용한 흡음률 측정)

  • 정성수;조문재;김용태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.692-693
    • /
    • 2004
  • We introduce a new velocity sensor, micro-flown sensor, which was developed by H-E de Bree. The sound absorption coefficients of a fiber material with the conventional pressure microphones and the micro-flown sensors were measured and compared. The experimental results show that both sensors could be well applied to measure the sound absorption coefficient but the pressure sensor was rather stable than micro-flown sensor

  • PDF

Study on the Damage Characteristics Under the High-Velocity Impact of Composite Laminates Using Various Sensor Signals (다양한 센서 신호를 이용한 복합적층판의 고속충격 손상 특성 연구)

  • Cho, Sang-Gyu;Kim, In-Gul;Lee, Seok-Je;You, Won-Young
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • The use of advanced composite materials in main structures of military and civil aircraft has been increased rapidly because of their considerable metals in high specific strength and stiffness. However, the mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single sensor or any conventional methods. In this paper, the PVDF sensors and AE sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) is used to decompose the sensor signals. In the PVDF sensor and AE sensor signal analysis, amounts of high-frequency signals are increased when the impact energy is increased. PVDF sensor and AE sensor signal appeared similar results. This study shows how various sensing techniques can be used to characterize high-velocity impact damage of advanced composite laminates.

High-Velocity Impact Damage Detection of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (압전필름센서 신호를 이용한 Gr/Ep 복합재 적층판의 고속충격 손상탐지)

  • Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.13-16
    • /
    • 2005
  • The mechanical properties of composite materials may degrade severely in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause sever damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PYDF(polyvinylidene fluoride) film sensors and strain gages were used for monitoring impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research demonstrate how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composites.

  • PDF

Control Method of Mobile Robots for Avoiding Slip and Turnover on Sloped Terrain Using a Gyro/Vision Sensor Module (Gyro/Vision Sensor Module을 이용한 주행 로봇의 미끄러짐 및 넘어짐 회피 제어 기법)

  • Lee Jeong-Hee;Park Jae-Byung;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.669-677
    • /
    • 2005
  • This acticle describes the control method of mobile robots for avoiding slip and turnover on sloped terrain. An inexpensive gyro/vision sensor module is suggested for obtaining the information of terrain at present and future. Using the terrain information and the robot state, the maximum limit velocity of the forward velocity of the robot is defined fur avoiding slip and turnover of the robot. Simultaneously the maximum value of the robot velocity is reflected to an operator in the form of reflective force on a forte feedback joystick. Consequently the operator can recognize the maximum velocity of the robot determined by the terrain information and the robot state. In this point of view, the inconsistency of the robot movement and the user's command caused by the limit velocity of the robot can be compensated by the reflective force. The experimenal results show the effectiveness of the suggested method.

A Study on Factors Influencing P-wave Velocity of Concrete (콘크리트의 P파 속도에 영향을 주는 인자에 관한 연구)

  • 이광명;이회근;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.725-730
    • /
    • 1998
  • Recently, non-destructive tests are getting popular in evaluating concrete properties without braking specimens. Among several NDT methods, P-wave velocity measurement technique has been widely used to evaluate the stiffness and strength of concrete. The purpose of this study is to investigate factors influencing P-wave velocity measured by impact-resonant method and ultrasonic pulse velocity method, such as moisture content of concrete, existence and size of coarse aggregates, sensor and sampling rate. Test results show that rod-wave velocity measured by impact-resonant method and ultrasonic pulse velocity are significantly affected by the moisture content of concrete, i.e., the lower moisture content, the lower velocity. Moisture content influences rod-wave velocity stronger than ultrasonic pulse velocity. Rod-wave velocity is faster in concrete than in mortar and is also faster in concrete containing small size aggregates. Sensor and sampling rate have little influence on velocity.

  • PDF

Development of Sensor Structure and Operating Circuit for Constant Resistive Type Flow Velocity/Mass Sensor (정저항형 유속/유량 센서의 구조 및 회로 개선 연구)

  • Kang, Yun-Seok;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1339-1341
    • /
    • 1994
  • In this paper, the flow velocity/mass sensor which is based on the principle of CCT(Constant Chip Temperature) and its digital operating circuit and system have been developed and tested. The experimental result for flow velocity shows that the sensitivity is $644.01{\mu}W^2/[m/sec]$ for air, and there is nearly no hysteresis for full measured range of velocity. Response tine is between 1 second and 8 seconds for low and large velocity variation, respectively.

  • PDF

Compact and versatile range-finding speedometer with wide dynamic range

  • Shinohara, Shigenobu;Pan, Derong;Kosaka, Nozomu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.158-161
    • /
    • 1995
  • A new laser diode range-finding speedometer is proposed, which is modulated by a pair of positive and negative triangular pulse current superimposed on a dc current. Since a target velocity is directly obtained form a pure Doppler beat frequency measured during the non-modulation period, the new sensor is free from the difficulties due to the critical velocity encountered in the previous sensor. Furthermore, the different amplitude of the two triangular pluses are so adjusted that the measurable range using only one laser head is greatly expanded to 10cm through 150cm, which is about two times that of the previous sensor. The measurement accuracy for velocity of .+-.6mm/s through .+-.20mm/s and for range is about 1%, and 2%, respectively. Because the new sensor can be operated automatically using a microcomputer, it will be useful for application of a 3-D range image measurement of a slowly moving object.

  • PDF

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Design and Fabrication of Silicon Flow Sensor For Detecting Air Flow (유속 감지를 위한 실리콘 유량센서의 설계 및 제작)

  • 이영주;전국진;부종욱;김성태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.113-120
    • /
    • 1994
  • Silicon flow sensor that can detect the velocity and direction of air flow was designed and fabricated by integrated circuit process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm, a heater at the center of the diaphragm, and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity of the sensor due to excellent thermal isolation property of dielectric materials and their tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the proposed structure. The sensor is fabricated using CMOS compatible process followed by the anisotropic etching of silicon in KOH and EDP solutions to form I$\mu$ m thick dielectric diaphragm as the last step. TCR(Temperature Coefficient of Resistance) of the heater of the fabricated sensors was measured to calculate the operating temperature of the heater and the output voltage of the sensor with respect to flow velocity was also measured. The TCR of the polysilicon heater resistor is 697ppm/K, and the operating temperature of the heater is 331$^{\circ}C$ when the applied voltage is 5V. Measured sensitivity of the sensor is 18.7mV/(m/s)$^{1/2}$ for the flow velocity of smaller than 10m/s.

  • PDF