• 제목/요약/키워드: Velocity profiles

검색결과 900건 처리시간 0.023초

수직 동심 환형관 내의 난류혼합대류 현상에 관한 직접수치모사 (Direct Numerical Simulation of Turbulent Mixed Convection in Heated Vertical Annulus)

  • 전용준;배중헌;유정열
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.674-681
    • /
    • 2009
  • Turbulent mixed convection in heated vertical annulus is investigated using Direct Numerical Simulation (DNS) technique. The objective of this study is to find out the effect of buoyancy on turbulent mixed convection in heated vertical annulus. Downward and upward flows with bulk Reynolds number 8500, based on hydraulic diameter and mean velocity, have been simulated to investigate turbulent mixed convection by gradually increasing the effect of buoyancy. With increased heat flux, heat transfer coefficient first decreases and then increases in the upward flow due to the effect of buoyancy, but it gradually increases in downward flow. The mean velocity and temperature profiles can not be explained by the wall log laws due to the effect of buoyancy, too. All simulation results are in good quantitative agreement with existing numerical results and in good qualitative agreement with existing experimental results.

단거리 이동을 반복하는 위치결정장치를 위한 효율적인 진동저감 방법 (A Method of Effective Vibration Reduction for Positioning Systems Undergoing Frequent Short-distance Movement)

  • 홍성욱;배규현
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.421-428
    • /
    • 2013
  • The current vibration reduction methods for positioning systems lead to either complicated motion or the need for additional hardware when the positioning systems carry out frequent short-distance movements. This paper proposes a simple yet efficient vibration reduction method for positioning systems subjected to frequent short-distance movements. The essence of the proposed method is the trapezoidal or triangular velocity profiles, whose acceleration/deceleration rates are designed to be related to the natural frequency of concern. The combined use of the proposed method and the input shaping method is also proposed for the possible application to multi-mode systems. Experiments are performed to validate the proposed method. The simulation and experiments prove that the proposed method is of great use for residual vibration reduction in positioning systems subjected to frequent short-distance movement.

Numerical Analysis on Melting and Solidification of Pure Metals with Enthalpy-Porosity Model

  • Kim, Sin;Chung, Bun-Jin;Kim, Min-Chan
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.99-105
    • /
    • 2002
  • A finite volume numerical approach is developed and used to simulate convection-dominated melting and solidification problems. The present approach is based on the enthalpy-porosity method that is traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity profiles in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computational cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely suppresses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative analysis with the previous numerical approaches is performed to demonstrate the improved features of the presented model. Results of a melting and solidification experiments are also used to assess and evaluate the performance of the model.

사출성형시 두께방향으로의 유동특성에 관한 유한요소 해석 (Finite element analysis for the flow characteristics along the thickness direction in injection molding)

  • 이호상;신효철
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.1026-1035
    • /
    • 1987
  • 본 연구에서는 두께방향에 따른 유동을 해석하는데 "fountain effect" 및 열 전달 현상을 동시에 고려하면서 진전하는 자유표면의 형상을 정확히 구하기 위한 유한 요소법을 이용한 수치해석법을 제안하고 그 방법을 적용하여 금형벽의 온도를 변화시 켜가면서 구체적인 유동특성을 해석하였다.특성을 해석하였다.

양측벽면에 반복돌출형 거칠기가 있는 이중관통로내의 난류운동과 열전달 (Turbulent Flow and Heat Transfer in an Annular Passage with Repeated-Ribbed Roughness on Both Walls)

  • 안수환;이윤표
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.26-36
    • /
    • 1996
  • The fully developed turbulent momentum and heat transfer induced by the square-ribbed roughness elements on both the inner and outer wall surfaces in concentric annuli are studied analytically based on a modified turbulence model. The analytical results of the fuid flow are verified by experiment. The experiment is done with a pitot tube and a X-type hot wire anemometer to measure the time mean velocity profiles, zero shear stress positions, maximum velocity positions and friction factors, and etc. shown in Fig.1. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, Reynolds number, Nusselt bumber and Prand시 number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view by investigating turbulent flows and heat transfer in Fig.1.

  • PDF

회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구 (Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

Defrost nozzle의 영향을 고려한 3차원 승용차 실내 유동 및 온도 해석 (3-D Numerical analysis of flow and temperature field in the cabin of the automobile with defrost nozzle discharged air)

  • 강규태;배인호;황지은;박원규;장기룡
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.31-36
    • /
    • 2001
  • The velocity and temperature profiles in the cabin of the automobile affect greatly to the comfort of the passenger. In this paper, the three dimensional flow and temperature analysis in the cabin of the automobile which is geometrically complicated was performed to investigate and predict the velocity and temperature profile. The three dimensional Navier-Stokes code used in this case was validated by performing of a 1/5 experimental scale model vehicle flow anal)rsis successfully. The temperature field of cavity was analyzed for Energy-equation code validation. The comparison of the results are made with the polished computational data and give a coincided one.

  • PDF

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.

축류회전차에서 팁간극의 변화를 고려한 유동특성에 관한 연구 (A Study on the Flow Characteristics in Axial Flow Rotors with Varying Tip Clearance)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.353-361
    • /
    • 2002
  • The tip leakage flow passing through the clearance between rotor blade tip and casing shroud has been known to occupy an important portion of the rotor overall loss. In this study, flow characteristics in axial flow rotors with different tip clearances is investigated by experimental and numerical methods. The experimental study was carried out to measure static pressure and velocity profiles at the real rotating test rig. The axial flow rotors used for the experiments have ten blades and three different rotor diameter. The tip clearance heights are 1mm, 3mm, and 4.5mm. Measurements were done using spherical type five-hole probe by non-nulling method. The numerical study was carried out to calculate pressure distributions and velocity vectors at the same condition as the experiments in the flow fields of axial flow rotors using Phoenics code.

측방압출에서의 재료유동특성에 관한 연구 (A Study on Characteristics of the Material Flow in Side-Extrusion)

  • 김영호;김강수;윤상식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.232-235
    • /
    • 1995
  • A side-extrusion model, meant for deeper understanding of the material flow in the CONFORM (continuous extrusion forming) of trub shaped aluminum profiles is presented. In order to get the desirded straight shape of the extrudate,every part of its cross-section must exit the die with the same velocity. Problem is assumed by plane strain UBET-model to analyze it in a simplified way. This has been done by studying the side-extrusion through a two -hole die face. The flow is balanced by determining the optimum lengths of the bearing lands, i.e., those lengths which result in equal exit velocities of the extrudates. Furthermore, the material flow, as influenced by the punch velocity, has been investigated.

  • PDF