• Title/Summary/Keyword: Velocity of penetration

Search Result 376, Processing Time 0.022 seconds

Genetic Variation in Growth Characteristics and Wood Properties of Ficus variegata Blume First Generation Progeny Trials in Indonesia

  • Liliek HARYJANTO;Sapto INDRIOKO;Arif NIRSATMANTO;Fanny HIDAYATI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • Two first-generation progeny trials of Ficus variegata Blume were planted in Yogyakarta, Indonesia, consisting of 17 families from the provenances of West Nusa Tenggara (WNT) and 19 families from the provenances of Cilacap-Pangandaran (C-P), respectively. The trials were evaluated after 10 years for growth characteristics [diameter (D), tree height (H) and stem volume (V)] and wood properties [stress-wave velocity (SWV) and Pilodyn penetration (P)]. Genetic variation, the coefficient of additive genetic variation (CVA), and heritability estimation were analyzed. Subsequently, genetic correlation between traits was estimated. The analysis of variance showed that there were significant differences in growth characteristics and wood properties in the WNT families, with significance observed across most factors except for height and P in the C-P families. The CVA in growth characteristics (D, H, V) was higher than for wood quality (SWV and P) in WNT and C-P families. Estimated family heritability (h2f) for growth characteristics, SWV, and P were high in the WNT families but moderate in the C-P families showing that genetic variation in the observed traits was more additive in the WNT families. The positive estimated genetic correlations between growth characteristics in two progeny trials, and the moderate to strong negative genetic correlation between D and P and also between P and SWV showed that growth characteristics and wood quality can be genetically improved simultaneously by using D as a selection criterion is an appropriate breeding strategy for F. variegata.

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF

Comparison of Liquefactive Hazard Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 재해도 비교)

  • Song, Seong-wan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.5-15
    • /
    • 2022
  • Due to the Pohang earthquakes in 2017, concerns are increasing that Korea is no longer safe from liquefaction, and needs the research to take proper measures for liquefaction. Liquefaction is defined as the loss of shear strength of the ground. In order to solve this problem, many studies, such as composing a liquefaction hazard map using Liquefaction Potential Index (LPI), have been conducted. However, domestic researches on the comparative analysis of liquefaction prediction results are not sufficient. Therefore, in this study, liquefaction hazard maps were composed using the standard penetration test results, shear wave velocity values, and cone penetration test results. After that, the precision was determined by comparing the calculated LPI using the geotechnical information and predicted LPI via spatial interpolation target. Based on the analysis results, the predicted LPI value using geotechnical information is more precise than using calculated LPI value.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Studies on the Penetration, Diffusion Ability and Effect of Insects Control Using the Methyl Bromide in the Vertical Silo (수직사이로에 있어 MB훈증제의 침투확산성 및 살충효과 시험)

  • Hah J.K.;Kim J.T.;CHO N.K.;Kim B.H.
    • Korean journal of applied entomology
    • /
    • v.20 no.4 s.49
    • /
    • pp.212-216
    • /
    • 1981
  • This experiment was carried out to investigate the penetration velocity and diffusion ability of methyl bromide fumigants under the condition of natural gravity, and the effect of in control of yellow corn in the vortical silo. The results were as fallows 1. The methyl bromide remainded concentration on the surface of the vertical silo was rapidly reduced from over 100mg/l to under 20mg/l, within 2 hours after supplying methyl bromide fumigant 2. Even 3m depth place from the surface of the vertical silo filled with yellolw corn was well penetrated within 30 minutes, but its remained methyl bromide gas was reduced gradually from over 100mg/l to 30mg/l after 12 hours duration. 5. In case of 13m place tile penetration ability of methyl bromide was over 100mg/l within one hour and kept the same concentration of it for 12 hours, its remainded methyl bromide preserved over 40mg/l until 48 duration time. 4. Less methyl bromide gas was detected at the bottom place than 3m and 13m depth of the vertical silo. It showed bellow 20mg/l of methyl bromide gas only through the whole duration time. 5. Comparing to the vertical penetration velocity of mehtyl bromide gas, the horizontal diffusion ability was not so good. Therefore, remained methyl bromide gas of 3m depth at the wall side of silo was about half than that of center circle where the nearer place from the methyl bromide supplying point, and the methyl bromide gas of 13m depth placed center circle was detected about 15 to 20 times than that of wall side. 6. For the purpose of examining the mortality of methyl bromide, the testing insects (Lesser Rice weevil and confused flour beetle) placed on the surface and bottom side of the silo were killed completely after 24 hrs fumigation, and the same results showed also at the 3m, 7m and 13m depth after 48 hrs fumigation.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates (다층 강재 방호판의 초고속 충격 파괴거동해석)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.761-768
    • /
    • 2013
  • New warheads are designed and developed to be highly lethal when used as part of ballistic missile payloads. There are many trades associated with the design of a central warhead core, mainly dealing with the projectiles or penetrators. Obviously, a payload-type configuration is very susceptible to kills from one projectile because of the high impacts required for bomblet or submunition payloads. Based on these requirements, the optimum kill vehicle configuration will have the smallest mass and relative velocity that will kill all the submunitions. The designs of the penetrator shape and size are directly related to the space and weight of the warhead. The shape, size, L/D, penetrator material, and manner in which they are inserted inside the surrounding explosive segments are critical in achieving successful penetrator design. The AUTODYN-3D code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of the penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, shape, and L/D of the penetrator.

Ballistic Protection Effectiveness Analysis of Armor Plates with Various Incident angles using Small Caliber Live Fire Test (소화기 실사격 실험 기반의 장갑 재질에 따른 입사각도별 방호성능 효과분석)

  • Lee, Gun-woo;Baek, Jang-Woon;Lee, Byoung-hwak;Kim, Jin-young;Kim, Jong-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • As a study on ballistic protection performance of a weapon system that is used in combat simulation, this paper aims to propose an improvement effect of the ballistic protection performance varying with incident angle of a bullet. For this, live-fire ballistic tests were performed to determine either complete penetration(CP) and partial penetration(PP) of three types of general armor plates made of uniformly rolled steel plates against a small caliber threat using 5.45 mm bullets with various speed. The major test parameter was the material of the weapon system and incident angle of the bullet with the target. Further, to quantitatively analyze the ballistic protection performance, three existing measurement methods were used for ballistic limit velocity. The test results showed that the ballistic protection performance with the incident angle of 30 degrees was 4% to 14% varying with the material of the armor plates greater than that of 0 degrees, which was approximately 1.1 times the performance improvement on average when compared to the conventional angle of incidence of the 0 degree. Those test results are expected to contribute to developing a more realistic combat simulation addressing the parameter improving the ballistic protection performance of an armor plate.

Integrated Analysis of Electrical Resistivity Monitoring and Geotechnical Data for Soft Ground (연약지반에서의 전기비저항 모니터링 및 지반조사 자료의 복합 해석)

  • Ji, Yoonsoo;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.16-26
    • /
    • 2015
  • To investigate the applicability of physical prospecting technique in soft ground assessment, the resistivity monitoring data of 6 months are acquired. The Multichannel Analysis Surface Wave (MASW) has been additionally performed to identify the shear wave velocity and strength distribution of soft ground. Moreover, by using the Cone Penetration Test (CPT) and laboratory tests of drilling samples, a relationship with the physical prospect data is checked and the reliability of the physical prospect data is increased. Through these activities, the behavior patterns of soft soil are identified by long term monitoring, and the significant relationship between the shear wave velocity and laboratory tests has been confirmed, both of which can be useful in the surface wave exploration to evaluate the strength of soft ground. Finally, using the geostatistical method, 3-dimensional soil base distribution images are obtained about the combined physical prospecting data with heterogeneous data. Through the studies, the nature of entire area can be determined by long term resistivity monitoring for the soft ground assessment in wider area. It would be more economic and reliable if additional exploring and drilling samples can be analyzed, which can reinforce the assessment.

The Prediction Method of the Small Strain Shear Modulus for Busan Clay Using CPT and DMT (CPT와 DMT를 이용한 부산점토의 최대전단탄성계수 추정방법에 관한 연구)

  • Hong, Sung-Jin;Yoon, Hyung-Ko;Lee, Jong-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.5-16
    • /
    • 2009
  • The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.