• Title/Summary/Keyword: Velocity of penetration

Search Result 372, Processing Time 0.03 seconds

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.411-432
    • /
    • 2020
  • This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic (HTI) magneto-thermoelastic rotating medium with combined effect of Hall current and two temperature due to multi-dual-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave characteristics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios of transmitted and reflected waves are computed numerically and illustrated graphically and compared for different theories of thermoelasticity. Some particular cases are also derived from this research.

Analysis of Effect on Seawater Flow Change and Circulation Inside Port Due to the Construction of South Breakwater and Weir at Gamcheon Port

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.136-146
    • /
    • 2020
  • In this study, numerical simulations are used to analyze the effect of the south breakwater and weir on seawater flow change and circulation within the Gamcheon port. Flow patterns in the eastern direction are particularly affected by the breakwater during the ebb tide and current velocity is slightly reduced by construction of the weir. Additionally, seawater circulation is reduced by both features. In order to increase seawater circulation, a seawater flux structure is needed on the west breakwater. A weir-type structure will be more efficient than a seawater flux culvert.

Numerical Analyses of Fuel Sprays in a Constant Volume Chamber (정적챔버내 연료분무의 수치해석적 연구)

  • Yang, Du-Han;Park, Hyung-Koo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.974-979
    • /
    • 2003
  • This study aimed to analyze spray characteristics and the ambient flow field in the mixture preparation state of the premixed combustion stage. It is very important to understand the spray characteristics and the fuel injection conditions in direct injection diesel engine because the emission gas compositions from diesel engines are related to spray formation processes of the premixed combustion stage. The numerical simulation was performed using the STAR-CD which is a commercial CFD code. Computed results of the transient high pressure diesel spray were compared with experimental results of the same spray injection condition in the constant volume chamber. The results show that spray patterns of numerical simulation agree with this experimental results comparatively.

  • PDF

Effect of nozzle geometry on the injection characteristics and spray behavior (고압 분사 디잴 인잭터의 노즐 형상이 분사 특성 및 분무 거동에 미치는 영향)

  • Lee, C.S.;Park, S.W.;Chon, M.S.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the characteristics of injection rate and macroscopic behavior of fuel spray injected from common-rail type diesel injectors with different nozzle geometries. The injection rates according to the nozzle geometries were measured at different energizing duration of the injector solenoid and injection pressure by using the Bosch's injection rate meter based on the pressure variation in the tube. The spray behaviors injected from the different nozzles were visualized using the spray visualization system composed of an Ar-ion laser, an ICCD camera, and a synchronization system at various injection and ambient pressures. It is revealed that VCO nozzle has higher spray tip velocity at the early stage of injection duration and wider spray cone angle than the mini-sac nozzles. Also the spray cone angle is increased with the increase of nozzle diameter.

  • PDF

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen;Kaur, Iqbal
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.191-218
    • /
    • 2019
  • The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

A Numerical Study on Stress Wave Propagation from Pile Driving (말뚝항타시 발생하는 응력파의 전파특성에 관한 수치해석적 연구)

  • 이종세;임정진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.123-130
    • /
    • 2002
  • The ground-borne vibration from pile driving is causing many public discontents. However, because of the fact that the characteristics of wave propagation and attenuation are not well understood, systematic and effective vibration reduction measures can not be taken. This paper attempts to study the propagation of stress waves induced by the pile driving. To simulate the wave propagation in a semi-infinite domain, the so-called absorbing boundaries are incorporated in the finite element method and a series of numerical simulations is performed. Numerical results show that the surface displacement and velocity increase first and then decrease as the pile penetration depth becomes larges.

  • PDF

Research on the Penetrator Characteristics and Flight Stability of Explosively Formed Penetrator (EFP 관통자 특성과 비행 안정성에 대한 연구)

  • Yi, Youngsun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2020
  • EFP composed of explosive, charge and liner generally penetrates standoff a target by Monroe effect. Its performance highly depends on penetrator characteristics and flight stability. Penetration ability can be dramatically reduced when the penetrator reaches the target with AOA, even if the penetrator has high kinetic energy and L/D ratio. Therefore, it is important to research not only penetrator characteristics and but also flight stability. In this work, the effect of liner shape on penetrator characteristics was examined using free flight test and numerical tools. It was found that tip velocity of penetrator was increased with decreasing liner thickness. It was also found that thicker liner had higher static margin leading to better flight status.