• Title/Summary/Keyword: Velocity feedback

Search Result 387, Processing Time 0.02 seconds

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong;Pereira, Emiliano;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.

Active Vibration Control of a Beam using Direct Velocity Feedback (직접속도 피드백을 이용한 보의 능동진동제어)

  • 이영섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.587-592
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair, because the sensor-actuator pair has strictly positive real (SPR) property. In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB sho robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a 'skyhook' damper, but the point sensor-distributed actuator pair with DVFB acts as a 'skyhook' rotational dmaper pair.ational dmaper pair.

  • PDF

선단 부하를 갖는 병진운동 단일 링크 탄성암 선단의 closed-loop 제어

  • 정훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.185-189
    • /
    • 1992
  • This paper prsents an end-point control of a one-link flexible arm with a payload by using closed loop control. Tip position of arm is shifted by the base motion according to DC servomotor, whivh is driven by a feedback signal composed of the tip displacement and the estimated tip velocity. The shifting problem of the arm from initial position to desired position is considered by the variation of the displacement gain Gd and velocity agin Gv. Theoretical results are obtained by applying the method of the Laplace transform to the governing equations and the method of numerical inversion. This system is composed of a flexible arm with payload, DC servomotor, and a ballscrew mechanism. The flexible arm is mounted on a mobile stage driven by a servomotor and ballscrew. In controlling the tip displacement of flexible arm, the fundamental bode vibration is supressed more rapidly with an increase of the velocity feedback gain Gv and the feedback displacemenmt gain Gd. Theretical responses are approximately in good agreement with those obtained experimentally.

A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance (부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구)

  • 윤일로;염만오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.435-449
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and easy to maintain, while providing almost the same performance. A number of observers to estimate the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of a rail-mounted quayside crane was constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the constructed pilot crane. Experimental results are provided.

Active Vibration Control of a Beam Using Direct Velocity Feedback (보의 능동진동제어을 통한 직접속도 피드백의 적용성 연구)

  • 이영섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.619-625
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair. because the sensor-actuator pair has strictly positive real (SPR) property In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a Point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB show robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a “skyhook” damper, hut the point sensor-distributed actuator pair with DVFB acts as a “skyhook” rotational damper pair.

Control of Semi-active Suspensions for Passenger Cars(I) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

Motion Control of Linear Pulse Motor for Artificial Heart

  • Yamada, H.;Mizuno, T.;Izumi, Y.;Wakiwaka, H.;Kataoka, Y.;Karita, M.;Maeda, M.;Kikuchi, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.101-106
    • /
    • 1998
  • This paper deals with the difference of the static and kinetic thrust characteristics of a linear pulse motor(LPM) without and with feedback control for a total artificial heart(TAH). In general, the kinetic thrust of LPM without feedback control decreases as increasing the mover velocity. The kinetic thrust characteristics of the LPM with feedback control are improved approximately 30% as compared with the LPM without feedback control in the high velocity range.

  • PDF

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • 이상현;민경원;강상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.431-438
    • /
    • 2004
  • This study is on control-gain estimation of energy dissipation control algorithms. Velocity feedback, bang-bang, and energy dissipation control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback and energy dissipation control algorithms, and chattering problem in bang-bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently, and thus provide good control performance.

  • PDF

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF