• 제목/요약/키워드: Velocity Transformation Method

검색결과 152건 처리시간 0.025초

상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구 (The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material)

  • 김준근;임장순
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석 (Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix)

  • 이영신;천일환
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.366-375
    • /
    • 1991
  • 본 연구에서는 보 이론(beam theory)의 변위함수(displacement function)를 도입하고 전달행렬법을 이용하여 각 배관요소의 경계조건에 대한 고유 진동수와 배관 의 불안정성을 일으키는 유체의 임계속도(critical velocity)를 계산 평가하고, 실험 으로 입증된 Blevins의 결과치와 비교하였다.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

원반던지기의 운동학적 분석 (The kinematics analysis of Discus throwing)

  • 김종인;선재복
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.29-47
    • /
    • 2003
  • This study is to analyze the kinematic variables in release motion of discuss throwing. For the matter, 5 people from the national team and collegiate discuss throwing in the year 2001 were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth 's low-pass filtering method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows; 1. The better record players showed the shorter approach time in the last support phase. 2. In the displacement CG, the better record players showed the shorter displacement in medial-lateral direction, and the longer displacement in horizontal direction. In the motion, the COG showed longer displacement vertical direction. 3. The better record players showed the faster horizontal velocity than vertical velocity in the release. 4. The better record players showed to take the posture of vertical axis in the release.

기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석 (Inverse Dynamic Analysis for Various Drivings in Kinematic Systems)

  • 이병훈
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.869-876
    • /
    • 2017
  • 기계시스템을 제어한다든지 그 부재를 설계하기 위하여 그리고 구동기의 용량을 결정하는데 있어서 구동력이나 조인트반력을 해석하는 것이 필요하다. 본 논문은 주어진 시스템의 운동을 구현하는 다양한 형태의 구동조건에 따른 구동력(또는 토크)을 조인트좌표 공간에서 계산하는 알고리즘을 제시한다. 조인트좌표를 기구학적 시스템의 일반좌표로 사용하며 운동방정식과 구속조건의 가속도식은 속도변환법을 이용하여 직교좌표공간으로부터 조인트좌표공간으로 변환한다. 수치예제를 통하여 제시된 알고리즘의 유용성을 확인한다.

슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어 (Robust Control of Biped Robot Using Sliding Mode Controller)

  • 박인규;김진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

이족보행로봇을 위한 슬라이딩 제어기 설계 (Sliding Mode Controller Design for Biped Robot)

  • 박인규;김진걸;김기식
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

해저구조물에 대한 비선형분산파의 변형 (Deformation of Non-linear Dispersive Wave over the Submerged Structure)

  • 박동진;이중우
    • 한국항만학회지
    • /
    • 제12권1호
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

합성곱 신경망 기반 선체 표면 유동 속도의 픽셀 수준 예측 (Pixel-level prediction of velocity vectors on hull surface based on convolutional neural network)

  • 서정범;김다연;이인원
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2023
  • In these days, high dimensional data prediction technology based on neural network shows compelling results in many different kind of field including engineering. Especially, a lot of variants of convolution neural network are widely utilized to develop pixel level prediction model for high dimensional data such as picture, or physical field value from the sensors. In this study, velocity vector field of ideal flow on ship surface is estimated on pixel level by Unet. First, potential flow analysis was conducted for the set of hull form data which are generated by hull form transformation method. Thereafter, four different neural network with a U-shape structure were conFig.d to train velocity vectors at the node position of pre-processed hull form data. As a result, for the test hull forms, it was confirmed that the network with short skip-connection gives the most accurate prediction results of streamlines and velocity magnitude. And the results also have a good agreement with potential flow analysis results. However, in some cases which don't have nothing in common with training data in terms of speed or shape, the network has relatively high error at the region of large curvature.