• Title/Summary/Keyword: Velocity Trajectory

Search Result 451, Processing Time 0.034 seconds

A minimum-time trajectory planning for dual robot system using running start (초기속도 부가에 의한 두 대의 로보트 시스템의 최소시간 경로계획)

  • 이지홍;문점생
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.423-427
    • /
    • 1993
  • A velocity planning method is proposed that ensures collision-free and minimal delay-time motions for two robotic manipulators and auxiliary equipments. Additional path, which makes robot start with possible largest speed, is added to the original prescribed path of one of two robots, and this running start along the additional path reduces delay time introduced to avoid collision between the robots and therefore reduces total traveling time.

  • PDF

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

A Study on the Cooperative Control of Multiple Mobile Robots Using a Hierarchical Structure (계층적 구조에 의한 다중이동로봇의 협동제어에 관한 연구)

  • Park, Sung-Kyu;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.95-98
    • /
    • 2001
  • A hierarchical structure for the cooperative control of multiple mobile robots using coordinates of objects obtained from vision system is proposed. The order-level perceives environments represented by workspace sets. The algorithm selects an object to be moved using an object discrimination part and determines the robot actions. The action-level generates a trajectory of each wheel velocity of robot. The simulation results show the effectiveness of the proposed algorithm.

  • PDF

A Simple Robust Tracking Controller for Robot Manipulators Using Joint Position Measurements Contaminated by Noises

  • Wada, Makoto;Oya, Masahiro;Sagara, Shinichi;Kobayashi, Toshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.147.2-147
    • /
    • 2001
  • In this paper we develop a new robust trajectory tracking control scheme without using joint velocity. The proposed controller doesn´t employ adaptation, Therefore, the construction of the controller becomed very simple. Moreover, by using numerical simulation, we make sure the effectiveness of the proposed controller in the presence of quantization errors.

  • PDF

An application of the CMAC to robot control

  • Nam, Kwang-Hee;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.999-1005
    • /
    • 1988
  • An iterative learning control scheme is presented with the aid of CMAC module. By enforcing the role of linear controller with the introduction of velocity feedback, it becomes possible to make the trajectory error equation stable. One advantage of this control scheme is that it does not require acceleration feedback. Computer simulation results shows a good performance of the scheme even in the case where the gravity is not compensated.

  • PDF

A Comparison of Sliding Mode and Integral Sliding Mode Controls for Robot Manipulators (로봇 매니퓰레이터를 위한 슬라이딩 모드와 적분 슬라이딩 모드 제어의 비교)

  • Yoo, Dong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.168-172
    • /
    • 2009
  • We compare an integral sliding mode control with a typical sliding mode control for robot manipulators through two primitive tasks: set-point regulation and trajectory tracking control. To prove the asymptotic stability of two methods for robot manipulators, we introduce three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices and we present one unified control structure using a parametric velocity vector. From illustrative examples, we show that two methods effectively control for robot manipulators.

Molecular dynamics simulation of ultra-low energy ion implantation for GSI device technology development (GSI소자 개발을 위한 극 저 에너지 이온 주입에 대한 분자 역학 시뮬레이션)

  • 강정원;손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.18-27
    • /
    • 1998
  • Molecular dynamicsinvestigations of ion implantation considering point defect generation were performed with ion energies in the range of ~1keV, Simulation starts perfect diamond cubic lattice site. Stillinger-Weber potential and ZBL potential were used to calculate forces between atoms. We have simulated slowing-down of ion velocity, ion trajectory and coupled-coing between ion and silicon. We also discussed distribution of point defect using rdial distribution function. We found that interstitial produced by ion bombardment mainly formed interstitial cluster.

  • PDF

Spiral motion of the oblate rising bubble (자유 상승하는 편구형 기포의 나선운동)

  • Lee, Jae-Young;Lee, Cheol-Ha
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3015-3020
    • /
    • 2007
  • An experimental study of the dynamic characteristics of the free rising oblate spherical bubble is investigated. As noted by Saffman, the characteristics of the spiral motion are defined with parameters of the spiral frequency, spiral radius, and rising velocity. High speed camera recorded every detail information of free rising bubble. The spiral number, the bubble rise velocity, and the angular velocities were measured for the bubble size between 1.0mm to 20.0mm in diameter. In order to make clear trajectory, we employed the Fast Fourier Transformation for the normal digital camera data to synchronize with the high speed camera data. It was found that the spiral number suggested here was monotonically decreased as the bubble size increases. The present observation, however tells us that previous Saffman's formulation shows a good agreement with the trend, but over estimated spiral number. Therefore, it is recommended that Saffman's theoretical study is needed to be improved.

  • PDF

Study on the Optimal Posture for Redundant Robot Manipulators Based on Decomposed Manipulability (분리된 조작도를 이용한 여유자유도 로봇의 최적 자세에 관한 연구)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.249-256
    • /
    • 1999
  • The conventional robot manipulability is decomposed into linear manipulability and angular manipulability so that they may be analysed and visualized in easy way even in the case of 3 dimensional task space with 6 variables. After the Jacobian matrix is decomposed into linear part and angular part, constraint on joint velocities is transformed into linear task velocity and angular task velocity through the decomposed Jacobian matrices. Under the assumption of redundant robot manipulators, several optimization problems which utilize the redundancy are formulated to be solved by linear programming technique or sequential quadratic programming technique. After deriving the solutions of the optimization problems, we give graphical interpretations for the solutions.

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF