• Title/Summary/Keyword: Velocity Servo Control

Search Result 153, Processing Time 0.027 seconds

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation (시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구)

  • Park, Ki-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

The Study on Position Control of Gantry Crane Spreader (갠트리 크레인 스프레더의 웨치제어에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF

Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya (대부하 대용량 유압 서보 시스템의 속도제어)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

Nonlinear Friction Compensator Design for Mechatronics Servo Systems Using Neural Network

  • Chung, Dae-won;Nobuhiro Kyra;Hiromu Gotanda
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.111-116
    • /
    • 2001
  • A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.

  • PDF

The Development of Automatic Design Software for DC Motor Servo Controller (DC 모터 서보 제어기의 자동 설계 S/W 개발)

  • Huh, Kyung-Moo;Lee, Eun-O;Cho, Young-June
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.888-893
    • /
    • 2000
  • This paper deals with the development of an automatic design software for DC servo motor control, which provides good performance with rapid response and velocity control accuracy. In the proposed method, the design is automatically executed using Matlab, and iterative learning control algorithms are used in the design process. We applied this method to 50W, 100W, 200W, 300W, 500W, 750W, 1.8kW and 4.5kW DC servo motors which are widely used in the industry. We compare the results of the manual tuning design method with that of the automatic design method presented in this paper. From the experimental results, we can find that the performance of the proposed method is better than that of the manual tuning design method.

  • PDF

A study on the non-standard PID control for electro-hydraulic servo system (전기 유압 서어보 시스템의 비표준 PID 제어에 관한 연구)

  • Lee, Yong-Joo;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.25-33
    • /
    • 1997
  • This study deals with controlling the velocity of Electr-Hydraulic servo system through the non-stan-dard PIC control. This was done as follows. First, we modeled nonlinearised model and linearised model, second designed analytic program for electro-hydraulic servo system velocity control Lastly, to im- prove dynamic characteristics of system we designed non-standard PID contoller and verifed throughth experi- ment and MATLAB program, commercial used software.

  • PDF

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF

A Study of High Precision Constant Velocity Control for Spiral Servo Writing in Hard Disk Drive (하드디스크 드라이브의 Spiral Servo Writing을 위한 초정밀 등속 제어 기법 연구)

  • Cho, K.N;Kang, H.J;Lee, C.W;Chung, C.J;Sim, J.S
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 2005
  • According to recent trend, hard disk drive(HDD) has been smaller and less weight. Therefore, it needs new method of writing position information. In this thesis, a new controller that is suitable for SSW is proposed. The controller accepted SSW technology that is used to write position information in current HDD industry. The important condition to perform SSW is to reach constant velocity decided from the head velocity profile as fast as possible. The constant velocity decides the positional accuracy of spiral pattern and setup time decides the capacity of HDD. The head velocity profile as a reference signal must be designed not to cause resonance mode. The proposed controller was designed with consideration of these 3 elements, and it properly works for SSW. The velocity profile designed with SMART control not only minimizes the jerk, but also does not cause the resonance mode of a plant. After designing a conventional PID controller, it compared with electrical spring technique and ZPET technique.

  • PDF