• 제목/요약/키워드: Velocity Multiplication

검색결과 22건 처리시간 0.02초

소형구의 속도증폭을 위한 사보 조립체의 실리콘고무 특성 연구 (A Study on the Silicone Rubber of Sabot Assembly for the Velocity Multiplication of Mini Ball)

  • 김영민;진두한;정동택
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.395-401
    • /
    • 2015
  • A mini ball launch system was developed for the study of dynamic fracture of ceramic materials. The principle of velocity multiplication system is similar to two stage gun. The plastic sabot assembly houses steel plunger and the void filled with silicone rubber. The sabot is stopped by the stopper block then the steel plunger inside the sabot compress the silicone rubber to high pressure. Then the compressive energy of the silicone rubber is transferred to the ball. More than ten times of initial speed was attained. In this study, most effective silicone rubber for the highest final speed was chosen out of three different varieties by launch tests.

상계해법에 의한 원형빌렛으로부터 타원 단면을 가진제품의 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of Elliptical Shapes from Round Billet)

  • 김한봉;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.210-213
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by axial distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increase with the die twisting angle and the aspect ratio of product and friction condition and reduction area and show that angular velocity increases with the decreases in die length.

  • PDF

상계해법에 의한 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion)

  • 김한봉;진인태
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.340-346
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of the extruded products with elliptical shapes from round billet. The twisting of extruded product is caused by the lin-early increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product in creases with the die twisting angle, the aspect ratio of product the friction condition, the reduction of area, and decreases with the die length.

  • PDF

상계해법에의한 원형빌렛으로부터 S형 단며의 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of S shape from Round Billet)

  • 진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.130-135
    • /
    • 1997
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by longitudinal distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product changes with the aspect ratio of product and increases with the decreases in die length and in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구 (A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet)

  • 김한봉;진인태
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

매자기 槐莖의 發芽에 미치는 環境 要因들 (Environmental factors influencing on tuber germination in scirpus maritimus l.)

  • Yang, Hae-Kyeng;Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • 제15권2호
    • /
    • pp.127-135
    • /
    • 1992
  • The effects of nacl concentration, temperatura, light and growth regulator(GA3, kinetin) on the tuber germination of s. maritimus were investigated. The germination percentage increased with decreasing nacl, showing salt tolerance through time, and with increasing temperature untile 20~30oC light / dark (12/12 hr) of optimal temperature. The multiplication of nacl and temperature on germination percentage and velocity, increased significantly in higher temperature than lower temperature in saline. The germination percentage showed high value in dark condition than in light condition which is the charracteristics of underground organ. and ga3 act as germination stimulator to overcome the inhibitory effect of nacl. The effect of ga3 showed significant differances on tubers of s. maritimus of germination but that of kinetin had a litter sffects on germination. Factors of nacl and temperature interacted significantly and the effects of nacl on germination percentage and velocity depended on temperature condition.

  • PDF

속도와 압력의 항의 마찰상수를 갖는 마찰기인 4자유도계 자려진동 시스템의 비선형 해석 (Nonlinear analysis of a 4-dof friction induced self-ocsillation system with the friction coefficient of velocity and pressure)

  • Joe, Yong-Goo;Shin, Ki-Hong;Oh, Jae-Eung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.331.1-331
    • /
    • 2002
  • Four degrees of freedom mathematical model is presented to describe the fundamental mechanisms of the disc brake squeal noise. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The friction coeficient including "relative velocity" and ′normal force" can be generally formulated as the form of multiplication with polynominal parameters(${\beta}$, ${\gamma}$). (omitted)

  • PDF

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

대향류 예혼합 난류 연소 유동에서의 Coherent Flamelet Model 적용 및 검증에 관한 연구 (A Study on Application and Validation of the Coherent Flamelet Model in Counterflow Turbulent Premixed Combustion)

  • 최창렬;허강열
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.51-58
    • /
    • 1996
  • The coherent flamelet model(CFM) is applied to symmetric counterflow turbulent premixed flames. The flame source term is set proportional to the turbulence intensity to reproduce the experimental correlation of Abdel-Gayed et al. for the turbulent burning velocity. Flame quenching by the turbulent rate of strain is modeled by an additional multiplication factor to the flame source term. A modified form of CFM is employed to consider coexistence of burned and unburned premixture with ambient air. The predicted flame position and turbulent flow field coincide well with the experimental data of Kostiuk et al., although there is some discrepancy in the radial rms velocity component and integral length scale near the symmetric plane.

  • PDF

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.