• Title/Summary/Keyword: Velocity Multiplication

Search Result 22, Processing Time 0.022 seconds

A Study on the Silicone Rubber of Sabot Assembly for the Velocity Multiplication of Mini Ball (소형구의 속도증폭을 위한 사보 조립체의 실리콘고무 특성 연구)

  • Kim, Young-Min;Jin, Doo-Han;Chung, Dong-Teak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 2015
  • A mini ball launch system was developed for the study of dynamic fracture of ceramic materials. The principle of velocity multiplication system is similar to two stage gun. The plastic sabot assembly houses steel plunger and the void filled with silicone rubber. The sabot is stopped by the stopper block then the steel plunger inside the sabot compress the silicone rubber to high pressure. Then the compressive energy of the silicone rubber is transferred to the ball. More than ten times of initial speed was attained. In this study, most effective silicone rubber for the highest final speed was chosen out of three different varieties by launch tests.

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of Elliptical Shapes from Round Billet (상계해법에 의한 원형빌렛으로부터 타원 단면을 가진제품의 압출가공의 비틀림 해석)

  • 김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.210-213
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by axial distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increase with the die twisting angle and the aspect ratio of product and friction condition and reduction area and show that angular velocity increases with the decreases in die length.

  • PDF

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion (상계해법에 의한 압출가공의 비틀림 해석)

  • Kim, Han-Bong;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.340-346
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of the extruded products with elliptical shapes from round billet. The twisting of extruded product is caused by the lin-early increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product in creases with the die twisting angle, the aspect ratio of product the friction condition, the reduction of area, and decreases with the die length.

  • PDF

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of S shape from Round Billet (상계해법에의한 원형빌렛으로부터 S형 단며의 압출가공의 비틀림 해석)

  • 진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.130-135
    • /
    • 1997
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by longitudinal distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product changes with the aspect ratio of product and increases with the decreases in die length and in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet (원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉;진인태
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF

Environmental factors influencing on tuber germination in scirpus maritimus l. (매자기 槐莖의 發芽에 미치는 環境 要因들)

  • Yang, Hae-Kyeng;Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • v.15 no.2
    • /
    • pp.127-135
    • /
    • 1992
  • The effects of nacl concentration, temperatura, light and growth regulator(GA3, kinetin) on the tuber germination of s. maritimus were investigated. The germination percentage increased with decreasing nacl, showing salt tolerance through time, and with increasing temperature untile 20~30oC light / dark (12/12 hr) of optimal temperature. The multiplication of nacl and temperature on germination percentage and velocity, increased significantly in higher temperature than lower temperature in saline. The germination percentage showed high value in dark condition than in light condition which is the charracteristics of underground organ. and ga3 act as germination stimulator to overcome the inhibitory effect of nacl. The effect of ga3 showed significant differances on tubers of s. maritimus of germination but that of kinetin had a litter sffects on germination. Factors of nacl and temperature interacted significantly and the effects of nacl on germination percentage and velocity depended on temperature condition.

  • PDF

Nonlinear analysis of a 4-dof friction induced self-ocsillation system with the friction coefficient of velocity and pressure (속도와 압력의 항의 마찰상수를 갖는 마찰기인 4자유도계 자려진동 시스템의 비선형 해석)

  • Joe, Yong-Goo;Shin, Ki-Hong;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.1-331
    • /
    • 2002
  • Four degrees of freedom mathematical model is presented to describe the fundamental mechanisms of the disc brake squeal noise. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The friction coeficient including "relative velocity" and ′normal force" can be generally formulated as the form of multiplication with polynominal parameters(${\beta}$, ${\gamma}$). (omitted)

  • PDF

The Charcteristics Analysis of Linear Pulse Motor (선형 펄스 전동기의 특성 해석)

  • Jo, Yun-Hyeon;Lee, Gwang-Ho;Kim, Seong-Do
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

A Study on Application and Validation of the Coherent Flamelet Model in Counterflow Turbulent Premixed Combustion (대향류 예혼합 난류 연소 유동에서의 Coherent Flamelet Model 적용 및 검증에 관한 연구)

  • Choi, C.R.;Huh, K.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 1996
  • The coherent flamelet model(CFM) is applied to symmetric counterflow turbulent premixed flames. The flame source term is set proportional to the turbulence intensity to reproduce the experimental correlation of Abdel-Gayed et al. for the turbulent burning velocity. Flame quenching by the turbulent rate of strain is modeled by an additional multiplication factor to the flame source term. A modified form of CFM is employed to consider coexistence of burned and unburned premixture with ambient air. The predicted flame position and turbulent flow field coincide well with the experimental data of Kostiuk et al., although there is some discrepancy in the radial rms velocity component and integral length scale near the symmetric plane.

  • PDF

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.