• Title/Summary/Keyword: Velocity Fluctuation

Search Result 345, Processing Time 0.022 seconds

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(II) (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(II))

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.427-435
    • /
    • 1997
  • Conditional sampling techniques are utilized to investigate the relation between the wall skin-friction and stream wise velocity fluctuations in a turbulent boundary layer. Conditionally averaged results using a peak detection and the VITA (variable-interval time-averaging) technique show that a high skin friction is associated with high frequency components of the wall skin-friction fluctuations. The conditionally averaged wall skin-friction fluctuations obtained by using the VITA technique have a positively-skewed characteristics compared with the conditionally averaged stream wise velocity fluctuations. It is confirmed that there exists a phase shift between the wall skin-friction and stream wise velocity fluctuations, which was also found from the long-time averaged space-time correlations. The amount of phase shift between the wall skin-friction and stream wise velocity fluctuations is the same as that from the long-time averaged space-time correlations and does not change despite the variation of the detection threshold.

Quantifying the Variation of Mass Flow Rate generated by Pressure Fluctuation (압력섭동에 의한 유량변동 측정 정량화)

  • Khil, Tae-Ock;Kim, Dong-Jun;Cho, Seong-Ho;Ahn, Kyu-Bok;Han, Yeoung-Min;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.152-156
    • /
    • 2007
  • It is very important to understand about mass flow rate variations of propellants generated by pressure fluctuation in the combustion chamber. Therefore, we have studied quantifying the variation of mass flow rate generated by pressure fluctuation. The flow velocity in orifice is acquired through theoretical approach after measuring the pressure in orifice and the flow area in orifice is measured by film thickness measuring device. Our results agreed with it in the very small error range comparing our results with velocity and mass flow rate in steady state. Thus, our result based on theoretical approach will help about measuring mass flow rate in non-steady state.

  • PDF

The effects of tripping structure on the development of turbulent boundary layer subjected to adverse pressure gradient (역압력 구배가 존재하는 난류 경계층의 발달에 트리핑 구조물이 미치는 영향에 관한 연구)

  • 임태현;김대성;윤순현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.36-44
    • /
    • 2001
  • The effects of various tripping structures on turbulent boundary layer subjected to adverse pressure gradient were examined. The profiles are compared to zero pressure gradient and adverse pressure gradient. The increases of tripping structures of height, k are affects almost flow parameter included velocity fluctuation, skin friction coefficient and turbulent boundary thickness.

  • PDF

Control of Pump Performance with Attaching Flaps on Blade Trailing Edges

  • Kanemori, Yuji;Pan, Ying Kang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.109-120
    • /
    • 2008
  • An innovative method of changing a centrifugal low specific speed pump performance and pressure fluctuation by applying outlet flaps to impeller exit has been investigated. The outlet blade edge section corresponds to the trailing edge of wing on the circular-cascade, which dominates the pump performance and pressure fluctuation. Computational fluid dynamics (CFD) analysis of the entire impeller and volute casing and an experimental investigation are conducted. The pressure fluctuation and the vibration of the shaft are measured simultaneously. Kurtosis is applied as a dimensionless parameter with which the unevenness of velocity distribution at impeller outlet is indicated. The influence of the flaps on the pressure fluctuation is explained by the kurtosis. This paper presents a theoretical method of predicting the pump performance related to the attachment of a flap at impeller outlet.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder (정지 및 회전하는 원주에 의한 난류후류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

Comparison of engine fault diagnostic techniques using the crankshaft speed fluctuation (크랭크축 각속도의 변동을 이용한 기관 이상 진단 방법 비교)

  • Kim, Se-Ung;Bae, Sang-Su;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2057-2066
    • /
    • 1996
  • ^In this paper, diagnostic technique for detecting the engine faults, especially misfire, are introduced and compared with each other under the same conditions. With all of them the instantaneous angular velocitys, measured at the flywheel, were analyzed. The techniques include the frequency analysis, auto-correlation function, velocity index, acceleration index, maximum acceleration index, and integrated torque index. Since the main driving components for the angular velocity fluctuation are both the pressure and the inertia torque, the component of the inertia torque in it must be excluded to extract the information of the combustion from the angular velocity. To do this, it is required to consider only the first half of the combustion period in the angular velocity fluctuations, which has never been proposed in the existing methods. On the basis of this fact, the results show that the most effective diagnostic technique is maximum acceleration index.