• Title/Summary/Keyword: Velocity Fluctuation

Search Result 345, Processing Time 0.026 seconds

Flow and Heat Transfer Characteristics in a Separated Flow over Backward-facing Step and Cavity Controlled by Acoustic Excitation (음향여기에 의한 2차원 후방계단과 공동 내의 유동 및 열전달 특성 변화)

  • Jo, Hyeong-Hui;Gang, Seung-Gu;Lee, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1253-1262
    • /
    • 2001
  • Experimental study is conducted to investigate the heat/mass transfer and flow characteristics for the flow over backward-facing step and cavities. A naphthalene sublimation method has been employed to measure the mass transfer coefficients on the duct wall and LDV system has been used to obtain mean velocity profiles and turbulence intensities. Reynolds number based on the step height and free stream velocity is 20,000 and St numbers of acoustic excitations given to separated flow are 0.2 to 0.4. The spectra of streamwise velocity fluctuation show a sharp peak forcing frequency for an acoustically excited flow. The results reveal that the vortex pairing and overall turbulence level are enhanced by the acoustic excitation and a significant decrease in the reattachment length and the increased turbulence intensity are observed with the excitation. A certain acoustic excitation increases considerably the heat/mass transfer coefficient at the reattachment point and in the recirculation region. For the cavities, heat/mass transfer is enhanced by the acoustic excitation due to the elevated turbulence intensity. For the 10H cavity, the flow pattern is significantly changed with the acoustic excitation. However, for the 5H cavity, the acoustic excitation has little effect on the flow pattern in the cavity.

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu - 2 . Sea Water Circulation in the Vicinity of Set Net Ground - (여수연안 정치망어장의 환경요인과 어황 변동에 관한 연구 - 2 . 어장주변 해역의 해수유동 -)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.142-149
    • /
    • 1994
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu. The current in the vicinity of set net grounds was observed by drogue and current meter in 1990 and 1992. The results obtained are summarized as follows: The direction of tidal current at the north enterance of Yeosu bay was southerly in ebb and northwesterly in flood without the distiction of the neap tide and the spring tide. In spring tide the maximum Velocity of the tidal current was 68 cm/sec in ebb and 66 cm/sec in flood. In neap tide the maximum velocity of the tidal current was 37 cm/sec in ebb and 35 cm/sec in flood. And so the direction of residual current was the south ward mainly and 21 cm/sec. The direction of tidal current at set net fishing grounds was southwesterly in ebb and westerly or northwesterly in flood. Regardless of the distinction of neap and spring. The maximum velocity of the current in spring tide was 50 cm/sec in ebb and 40 cm/sec in flood and that in neap was 28 cm/sec in ebb and 25 cm/sec in flood. In spring tide the speed vector along the major axis of semidiurnal tide component was three times as large as diurnal tide. In neap tide, however, the speed vector was about 50% less then that in spring tide, and the semidiurnal tide and diurnal tide were equal in the size of current ellipse and the direction of major axis. The sea area had a southwesterly residual current. 11 cm/sec in spring tide and 7 cm/sec in neap tide. According to the result of drogue tracking, the vicinity of set net fishing ground had a southerly residual current which formed in Yeosu Bay and a weak westerly residual current toward Dolsando from Namhedo. Therefore, set net fishing ground in coastal water of Yeosu was distributed in boundary of inner water which formed from Seamjin river and offshore water supplied from the vicinity of Sorido and Yochido.

  • PDF

Comparative Analysis of Flow Characteristics Using Reflected Pressure Wave at Crossing of Subway Trains in Straight Tunnel (직선터널에서 지하철 열차의 교차운행 시 반사파 간섭에 따른 유동 특성 비교분석)

  • Lee, Deuksun;Cho, Jungmin;Lee, Myeongho;Sung, Jaeyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • In this study, CFD is used to compare and analyze the flow characteristics using reflected pressure wave during the intersection of two trains in straight tunnel. Two tunnels of different lengths; 600 m and 3,400 m were designed and numerical analysis of the flow characteristics of two tunnels carried out by setting the crossing state of the two trains at a constant velocity of 27 m/s form the center of the tunnel. The simulation model was designed using the actual tunnel and subway dimensions The train motion was achieved by using the moving mesh method. For the numerical analysis, $k-{\omega}$ standard turbulence model and an ideal gas were used to set the flow conditions of three-dimensional, compressible and unsteady state. In the analysis results, it was observed that the inside of the long tunnel without interference of the reflected pressure wave was maintained at a pressure lower than the atmospheric pressure and that the flow direction was determined by the pressure gradient and shear flow. On the other hand, the flow velocity in the short tunnel was faster and the pressure fluctuation was noted to have increased due to the reflected pressure wave, with more vortices formed. In addition, the flow velocity was noted to have changed more irregularly.

Flow Control by Piezoceramic Actuator in a flat plate (평판에서 압전 세라믹 액추에이터에 의한 유동제어)

  • Kim, Dong-Ha;Han, Jong-Seob;Chang, Jo-Won;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1080-1088
    • /
    • 2009
  • An actuator using piezoceramic material was designed in order to perform a flow control for flat plate flow. Boundary layer measurements were carried out to explore the flow disturbances by the designed actuator that was activated at low excitation frequency(15Hz). The mean velocity and fluctuation in the boundary layers were measured at $x/{\delta}^*=31.9$ downstream from the actuator tip by a one-dimensional hot-wire probe(55P14). Results reveal that low- and high-velocity regions were observed in the vicinity of the actuator center and in the outer area of the actuator respectively, and the formation of counter-rotating streamwise vortices was predicted. The fluctuations were persistently found in the outer part of the actuator and an inflection point in the spanwise gradient of the streamwise velocity was observed. Boundary layer instability was amplified at both the actuator excitation frequency and the T-S wave frequency when the actuator was excited at low frequency.

Control of the VIV of a cantilevered square cylinder with free-end suction

  • Li, Ying;Li, Shiqing;Zeng, Lingwei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.75-84
    • /
    • 2019
  • A steady slot suction near the free-end leading edge of a finite-length square cylinder was used to control its aerodynamic forces and vortex-induced vibration (VIV). The freestream oncoming flow velocity ($U_{\infty}$) was from 3.8 m/s to 12.8 m/s. The width of the tested cylinder d = 40 mm and aspect ratio H/d = 5, where H was the height of the cylinder. The corresponding Reynolds number was from 10,400 to 35,000. The tested suction ratio Q, defined as the ratio of suction velocity ($U_s$) at the slot over the oncoming flow velocity at which the strongest VIV occurs ($U_{\nu}$), ranged from 0 to 3. It was found that the free-end slot suction can effectively attenuate the VIV of a cantilevered square cylinder. In the experiments, the RMS value of the VIV amplitude reduced quickly with Q increasing from 0 to 1, then kept approximately constant for $Q{\geq}1$. The maximum reduction of the VIV occurs at Q = 1, with the vibration amplitude reduced by 92%, relative to the uncontrolled case. Moreover, the overall fluctuation lift of the finite-length square cylinder was also suppressed with the maximum reduction of 87%, which occurred at Q = 1. It was interesting to discover that the free-end shear flow was sensitive to the slot suction near the leading edge. The turbulent kinetic energy (TKE) of the flow over the free end was the highest at Q = 1, which may result in the strongest mixing between the high momentum free-end shear flow and the near wake.

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

TRAO-TIMES: Investigating Turbulence and Chemistry in Two Star-forming Molecular clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • Turbulence produces the density and velocity fluctuations in molecular clouds, and dense regions within the density fluctuation are the birthplace of stars. Also, turbulence can produce non-thermal pressure against gravity. Thus, turbulence plays a crucial roles in controlling star formation. However, despite many years of study, the detailed relation between turbulence and star formation remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped two star-forming molecular clouds, the Orion A and the ρ Ophiuchus molecular clouds, in six molecular lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We applied the Principal Component Analysis (PCA) to the observed data in two different ways. The first method is analyzing the variation of line intensities in velocity space to evaluate the velocity power spectrum of underlying turbulence. We investigated the relation between the star formation activities and properties of turbulence. The other method is analyzing the variation of the integrated intensities between the molecular lines to find the characteristic correlation between them. We found that the HCN, HCO+, and CS lines well correlate with each other in the integral shaped filament in the Orion A cloud, while the HCO+ line is anti-correlate with the HCN and CS lines in L1688 of the Ophiuchus cloud.

  • PDF

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.

Effects of Stroke Change on Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve SI Engine (Stroke 변화가 Four-Valve SI 기관 실린더내 난류 운동에너지에 미치는 영향)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2011
  • The effects of stroke change on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same intake manifold, head, cylinder, and the piston were used to examine turbulence characteristics in two different strokes. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke. However, in the absence of two counter rotating vortices, this intake generated turbulent kinetic energy continues to decrease but at a much faster rate.

Experimental study on impeller discharge flow of a centrifugal compressor (원심 압축기 임펠러 출구 유동에 관한 실험적 연구)

  • 신유환;김광호;손병진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF