• 제목/요약/키워드: Velocity Controller

검색결과 758건 처리시간 0.03초

각도 측정치만을 이용한 로봇을 위한 강인한 제어기 설계 (Robust Linear Tracking Controller Design for Manipulators Using Only Position Measurements)

  • 최한호;이형기;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.347-350
    • /
    • 1992
  • In this note, we propose a method for designing a robot controller which can suppress the effects of both the model uncertainty and noisy velocity measurements. The controller is an output feedback compensator of which the constant gains are given in terms of a Riccati equation and a Lyapunov equation. The controller guarantees not only uniform boundedness but uniform ultimate boundedness. The stability result is local but the region can be arbitrarily enlarged at the expense of large control gain. The control law needs neither the exact knowledge of the physical robot parameters nor clean velocity measurements.

  • PDF

Writer Identification using Wii Remote Controller

  • Watanabe, Takashi;Shin, Jung-Pil;Chong, Ui-Pil
    • 융합신호처리학회논문지
    • /
    • 제14권1호
    • /
    • pp.21-26
    • /
    • 2013
  • The objective of this study was to develop a system for handwriting recognition in three dimensions (3D) to authenticate users. While previous studies have used a stylus pen for two-dimensional input on a tablet, this study uses the Wii Remote controller because it can capture 3D human motion and could therefore be more effective means of recognition. The information obtained from a Wii Remote controller included x and y coordinates, acceleration (x, y, z), angular velocity (pitch, yaw, roll), twelve input buttons, and time. The proposed system calculates distances using six features extracted after preprocessing the data. In an experiment where 15 subjects wrote "AIZU" 10 times, we obtained a 94.8% identification rate using a combination of writing velocity, the peak value of pitch, and the peak value of yaw. This suggests that this system holds promise for handwriting-based authentication in the future.

로보트 메니플레이터의 목표궤적 추종을 위한 학습제어기 구현 (A Learning Controller Implementation for Robot Manipulators to track the desired trajectory)

  • 조형기;길진수;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.386-388
    • /
    • 1996
  • This paper presents the learning controller for robot manipulators to track the desired trajectory exactly. The learning controller, based on the Lyapunov theory, consists of a fixed PD action and a repetitive action for the purpose of feedforward compensation which is adjusted utilizing a linear combination of the velocity and position errors. The learning controller Is often used In case of the desired trajectories are periodic tasks, and has advantage that it periodically converges to zero even if we don't know the exact dynamic parameters. In this paper, we show that the position and velocity errors of robot manipulators converge to zero sa time goes infinite for the input is periodic function and show a good trajectory tracking performance In the cartesian space.

  • PDF

영구 자석형 동기모터 속도제어를 위한 비선형 슬라이딩 매니폴드 설계 (Velocity Control of Permanent Magnet Synchronous Motors Using Nonlinear Sliding Manifold)

  • 길정환;신동훈;이영우;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1136-1141
    • /
    • 2015
  • In this paper, we develop a sliding mode controller that uses a nonlinear sliding manifold for the permanent magnet synchronous motor. The proposed controller makes sure that both currents and velocity tracking error converge into equilibria. Nonlinear sliding manifold consists of current dynamics and nonlinear functions which are designed with velocity tracking error and its integrated term. The nonlinear functions are designed to guarantee that velocity tracking error converge into zero. The closed-loop stability is proven by Lyapunov theory. The effectiveness of proposed method is demonstrated by numerical simulation results.

S-PI 제어기를 이용한 개선된 하이브리드 멀티전동부항시스템 (Enhanced Hybrid Multi Electrical Cupping System using S-PI Controller)

  • 김종찬;김치용
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1400-1407
    • /
    • 2015
  • In the paper, we suggest bettered EHMECS(Enhanced Hybrid Multi Electrical Cupping System) to regulate automatically vacuum pressure using many cupping cup at once. We controlled accurately the pressure using S-PI control technique in pump motor to input the air inside cupping cup. S-PI control compared constant velocity, load and velocity variance between existing PI and FLC(Fuzzy Logic Control). The stabilization time of suggested S-PI control improve 20% of existing PI and 8% of FLC. The error constant of normal condition improved 71% of existing PI and 62% of FLC in steady speed and 80% of existing PI and 67% of FLC in load change. Also the error constant about velocity variance improve 45% of PI control. It is prove the suggested S-PI control technique. When use long time vacuum pressure of cupping cup regulated the suggested S-PI control technique, can loosen knotted muscles.

피치제어형 풍력발전시스템의 속도제어 (Speed Control of a Wind Turbine System Based on Pitch Control)

  • 임종환;허종철
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

가변구조제어를 응용한 직류서보 제어계의 위치제어에 관한 연구 (Mortion Control of DC Servo System Using Variable Structure Control)

  • 홍순일;배규환;송주용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.742-744
    • /
    • 1995
  • In position control system using variable structure control, the velocity of control object is controlled to approach the desired specified velocity patterns, and eventually the position of control object is correctly at reference position. Here, this intention can be success by means of variable structure control. In this paper, the PI velocity feedback control is also used sliding mode controller. The design of position controller under specified velocity profiles in variable structure control's constraints is studied.

  • PDF

공압모터의 속도 전향이득을 갖는 슬라이딩 모드 제어 (Sliding Mode Control with Velocity Feedforward Gain of a Pneumatic Motor)

  • 김근묵;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1061-1064
    • /
    • 2006
  • In this study, the performance of the tracking control of a pneumatic servo motor driven position control system using sliding mode is investigated. It is usually quite difficult to obtain precise tracking control of a pneumatic servo motor driven position control system because of the nonlinear deadband and stick-slip friction of the proportional valve. Therefore, a continuous sliding mode controller with velocity feedforward gain is proposed. Experimental results show that the tracking accurracy can be remarkably improved by adding a proper velocity feedforward term to continuous sliding mode controller.

무진동 크레인 구현을 위한 속도경로설계 연구 (Velocity trajectory planning for the implementation of anti-swing crane)

  • 윤지섭;박병석
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.143-152
    • /
    • 1994
  • The velocity trajectory profile of trolley is designed to minimize both swinging while transportation of load and the stop position error at the final stop position. This profile is designed to be automatically programmed by the digital control algorithm when the length of chain and the desired travel distance are given as a priori. Also, to minimize both swinging and the stop position error the anti-swing controller which improves poor damping characteristics of the crane and the stop position controller are employed. The experimentalresults of sequential adaptation of the velocity trajectory profile and these two controllers show that this control scheme has excellent control performance as compared with that of the uncontrolled crane system.

  • PDF

볼빔에 대한 비선형 제어기 및 관측기 설계 (Nonlinear Controller and Observer Design for Ball and Beam)

  • 임규만
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF