• Title/Summary/Keyword: Velocity Controller

Search Result 758, Processing Time 0.023 seconds

Controller Design for Web Winding Process (웹재료의 와인딩 공정을 위한 제어기 설계)

  • 박기홍;허승진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.99-107
    • /
    • 2003
  • In a winding process, important control specifications include regulation of web tension and velocity. In this research, an adaptive controller has been developed for controlling web tension and velocity in winding processes. For the controller design, the linear quadratic regulator theory has been adopted and a gain-scheduling scheme has been incorporated. A prototype winding system has been constructed, and the controller has been implemented in a real-time PC-based environment. The performance of the closed loop system has been evaluated via simulation and experiments, and it was observed that both the web tension and velocity could be regulated within a small tolerance.

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance (부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구)

  • 윤일로;염만오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

The Stable Path Tracking Controller with the Optimizied Fuzzy Parameters Generator (최적화된 퍼지 파라메타생성기를 이용한 안정한 궤적제어기)

  • Jang, Hong-Min;Kim, Young-Bak;Kim, Dae-Jun;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2989-2991
    • /
    • 1999
  • We design the stable controller with variable gains and reference velocity in order to apply to this controller the proper gains and reference velocity generated with fuzzy logic in on-line. The proposed controller is applied to solve two problems including the reference velocity tracking problem and speedy tracking problem. The result of the simulation show a robust performance under the different conditions

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

Volume Velocity Control of Active Panel to Reduce Interior Noise (실내소음 저감을 위한 능동패널의 체속도 제어)

  • 김인수
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators (전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어)

  • Lee Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.

A Hierachical Controller for Soccer Robots (축구로봇을 위한 계층적 제어기)

  • Lee, In-Jae;Baek, Seung-Min;Sohn, Kyung-Oh;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.803-812
    • /
    • 2000
  • In this paper we introduce a model based centralized hierarchical controller for cooperative team of soccerplaying multiple mobile robots. The hierarchical controller is composed of high-level and low-level controllers. Using the coordinates information of objects from the vision are simple models of multiple mobile tobots on the playground. Subsequently, the high level controller selects and action model corresponding to the perceived state transition model and generates subgoal and goal-velocity, from which the low level controller generates trajectory of each wheel velocity of the robot. This two layered simplicity. The feasubility of the control strategy has been demonstrated in an implementation for real soccer games at a MiroSot league.

  • PDF

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

Nonlinear Friction Compensation using the Information of Integral Controller (적분 제어기 정보를 이용한 비선형 마찰보상)

  • 송진일;최용훈;유지환;권동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-119
    • /
    • 2000
  • This paper presents simple and effective nonlinear friction compensation methods. When the direction of position command reverses, the integrator output of the PID controller does not change the sign of its output instantaneously, due to friction at zero velocity, i.e. stiction resulting tracking errors, that results in continuous push even though the command direction has been changed. To overcome this problem, we attempt to reverse the sign of the integrator output as the sign of velocity changes. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Shperical joints) in-parallel 6-D.O.F manipulator. The control strategy has been analyzed for stability. Also discussed are disturbance observer and velocity observer approaches for friction compensation.

  • PDF