• 제목/요약/키워드: Velocity Control Method

검색결과 1,184건 처리시간 0.029초

고속열차의 저해상도 타코미터를 이용한 정확한 속도 추정에 관한 연구 (An Accurate Velocity Estimation using Low Resolution Tachometer of High-Speed Trains)

  • 이재호;김성진;박성수
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.131-136
    • /
    • 2018
  • Reliable velocity estimation technology for trains is one of technologies used to operate trains safely and effectively. Various sensors such as tachometers, doppler radars, and global positioning systems are used to estimate velocity of a train. Tachometer is widely used to estimate velocity of a trains due to its simplicity, small volume, cost-effectiveness, continuously measurement at high speed, and robustness against noise. Accuracy in the velocity calculation using a tachometer depends on quantization error, measurement error of wheel radius or diameter, and tachometer's imperfection from manufacturing or installation process. In this paper, we present an accurate velocity estimation method using a low-resolution tachometer, which is commonly installed on a high-speed train. Baseline estimation method is proposed to accurately calculate the velocity of the high-speed train from tachometer's pulses. HEMU-430x test train is used for the experiment and verification of the proposed method. Experimental results with several routes show that the proposed method is more accurate than a conventional method.

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

속도제어를 대상으로 하는 계통의 최적제어 (Optimal Control of Speed Regulating Systems)

  • 양흥석;이종호
    • 전기의세계
    • /
    • 제28권2호
    • /
    • pp.55-60
    • /
    • 1979
  • In this paper, a new method of the optimal control of the regulator and tracking control problem concerning the dimension of the velocity is derived and applied for the second order plant. The output position, output velocity and the control effort are plottcd with time applying analog computer simulation. And it is compared with the output of the ordinary optimal control law in case the reference input is given by velocity function, and studied about the gain of this method.

  • PDF

Real-Time Response at Motion Control

  • Ha, Young-Youl;Han, Sung-Ho;Woo, Gap-Joo;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.94.2-94
    • /
    • 2002
  • $\textbullet$ The method to have real-time response at the motion control. $\textbullet$ The trajectory generation method guarantees the continuous acceleration in changing the velocity during the actuator is moving. $\textbullet$ We propose the velocity profile generation algorithm in order to change object position or object velocity with continuous acceleration using blending method.

  • PDF

INS 속도와 다중 상관기를 이용한 고속 항체용 GPS 수신기의 빠른 신호 획득 기법 (A Fast GPS Signal Acquisition Method for High Speed Vehicles Using INS Velocity and Multiple Correlators)

  • 정호철;김정원;황동환;이상정;이태규;송기원
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.603-607
    • /
    • 2008
  • This paper proposes a fast acquisition method using INS velocity and multiple correlators for high speed vehicles. In order to reduce acquisition time in GPS receiver, the method utilizes inertial velocity information and multiple correlators. Search range of the Doppler frequency is reduced by using INS velocity and the number of cells at one search can be increased by using multiple correlators. By using both multiple correlators and the INS velocity in the acquisition, search space can be greatly reduced. Experimental results show that the method gives faster signal acquisition performance than the conventional method.

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

하이브리드 방식을 이용한 크레인의 안티스웨이 제어 (Anti-sway Control of Crane System using Hybrid Control Method)

  • 박흥수;박준형;이동훈;김상봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.559-562
    • /
    • 1995
  • In the crane control system, it is reguired that the travelling time of the crane must be reduced as much as possible and the swing must be stoped at the end point. In paper, we present a hybrid control method which include the optimal regulator and velocity pattern controller in order to make high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the liner time invariant state equation can be obtained. In order to experiment the crane control, we consider 1 over 10 of the gantry crane which is used in a port. As a result, the hybrid control method improve efficient anti-sway control more than conventional velocity pattern control. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종 (Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors)

  • 조남섭;권지욱;좌동경
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어 (Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method)

  • 서진호;이권순
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

이중 광학식 회전 엔코더 구조를 이용한 고정밀도 엔코더 시스템 개발 (Development of a High-Resolution Encoder System Using Dual Optical Encoders)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.76-85
    • /
    • 2007
  • An optical rotary encoder is easy to implement for automatic control applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using the encoder, there are various angular velocity detecting methods, M-, T-, and M/T-method. Each of them has a property of its own. They have common limitation that the angular velocity detection period is strongly subject to the destination velocity magnitude in case of ultimate low range. They have ultimate long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a dual encoder system with two encoders of normal resolution. The dual encoder system is able to keep detection period moderately at near zero velocity and even detects zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the dual encoder system validity.