• Title/Summary/Keyword: Velocity Control Method

Search Result 1,189, Processing Time 0.035 seconds

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.

Influence of Delay Time on the Ground Vibration (발파공간 지연시차가 지반진동에 미치는 영향)

  • Kim, Ji-Soo;Choi, Tae-Hong;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, 16 test blastings had been carried out with different spacings, burdens, drilling lengths, and charges per delay for investigating the characteristics of ground vibration propagation, which depends on the delay time. From the tests, it was possible to derive a ground vibration equation. Using the equation, the characteristics of ground vibration could be investigated by analyzing the nomogram and predicting the Peak Particle Velocity (PPV), which are influenced by the delay time and the priming location. The trend of ground vibration change depending on the delay time was analyzed for the standards charges of 0.5, 1.6, 5, and 15 kg, which were suggested in "Blasting design and construction guidelines to road construction" by the Ministry of Land, Infrastructure and Transport. From the study, it would be possible to suggest a favorable vibration control method, which depends on the charge.

Position Sensorless Cotrol of SRM using Evolutionary Sliding (진화 슬라이딩 모드 관측기를 사용한 SRM의 위치 센서리스 제어)

  • 박진현;박한웅;최영규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.516-523
    • /
    • 2001
  • This paper introduces a indirect rotor position and speed estimation algorithm for the SRM(switched reluctance motor) sensorless control based on the sliding mode observer and evolutionary programming The information of position and speed is generally provided by encoder or resolve. However, the position sensor not only adds complexity, cost and size to the whole drive system, but also causes limitation for industrial applications. In this paper, in order to eliminate the position sensor, indirect position sensing, indirect position sensing method using sliding mode observer is used for SRM drives. But if sliding mode observer parameters are selected to be large, the corresponding rapid changes of estimated position and velocity result in chattering phenomenon. Therefore in order to reduce the chattering, this observer parameters are optimized by evolutionary programming. And PID controller is also optimized to track precisely for the SRM using evolutionary programming.

  • PDF

Optimized Walking Will Recognizing System of the Walking Aid with the Fuzzy Algorithm (퍼지 알고리즘을 이용한 보행보조기의 최적화된 보행 의지 파악 시스템)

  • Kong, Jung-Shik;Lee, Dong-Kwang;Nam, Yun-Seok;Lee, Bo-Hee;Lee, Eung-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.692-699
    • /
    • 2008
  • This paper describes optimal operation method using recognition of walker's will for a robotic walker. Recently, walking aid system has been required according to the increase of elder and handicapped person. However, most of walking aid system don't have actuator for its movement. Unfortunately, standard frames have weakness for the movement to upward/download direction of slope. So, active type walking aids are interested, but it is not easy to control. In this paper, we adapt user's will system that can recognize walking direction and speed. First, FSR(Force Sensing Register) is applied to measure user's will to walk. And then, fuzzy algorithm is used for determining optimal wheel velocity and direction of the walking aid. From the result, walking aid can move smoothly and safely following the user's will. The walking aid can help user to walk more optimally. Here, all the processes are verified experimentally in the real world.

Application of Transcranial Doppler Ultrasonography(TCD) for the Diagnosis of Migraine : Preliminary Results (Transcranial Doppler Ultrasonography를 이용한 편두통의 진단: 예비연구)

  • Lee, Young-Seok;Kim, Byung-Kun
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • Dignosis of migraine is only based on the medical history, and objective methods to aid the clinical diagnosisare absent. Although transcranial Doppler ultrasonography (TCD) abnormalities in headache-free migraineurs have been reported previously, diagnostic criteria for migraine is still lacking and this may limit the practical application of TCD for migraine. We prospectively studied several abnormal TCD indices in interictal migraineurs and their sensitivity and specificity to define the optimal diagnostic criteria. Young (20 yrs$age=29.0{\pm}6.1yrs$) were compared to 69 controls (M:F=25:44, Mean $age=31.2{\pm}5.5yrs$). Elevated MFV (> 2SD)was observed in 63% of migraineurs while n 12% of control (p<0.01). High AI (>25%) or high HI (>3.0) was present in 17% of migraineurs, while 3% and none in controls (p<0.01). Sensitivity of elevated MFV, high AI, and high HI was 63%, 17%, 17% and specificity was 88%, 97%, 100%, respectively. If all these indices were combined, sensitivity and specificity reached 69% and 86%. These preliminary results suggest pathophysiological implication of vasospasm in interictal migraineurs, and TCD may be practically applicable for migraine. Optimal diagnostic criteria and therapeutic options for patients with abnormal TCD findings remain to bo determined.

  • PDF

Compressive Strength Correlation of Very-Early-Strength Dry-Mix Shotcrete on Test Method (측정방법에 따른 속경성 건식 숏크리트 압축강도의 상관관계)

  • Yun, Kyong-Ku;Choi, Sung-Yong;Kim, Jin-Woung;Kil, Yong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3988-3997
    • /
    • 2010
  • Shotcrete was a mortar or concrete that is pneumatically projected at high velocity onto a subject. It has been applied for tunneling, underground big-spaces, slope stabilization. Shotcrete is increasing use in structure repair. The dry-mix shotcrete require a smaller equipment, easy maintenance, possible of very-earlystrength materials than wet-mix shotcrete, which make this process attractive and economic for structural repairs. It is common practice core compressive strength to the dry-mix shotcrete quality control. This test is very difficult estimating eraly-strength of Very-Early-Strength Dry-Mix Shotcrete. The purpose of this research was to analyze the correlation of test results among cube test, core test, pullout test and maturity. The correlationship analysis of test results among cube test, core test, pullout test and maturity showed more than 90%.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Cross Draft Directions and Velocities Using Smoke Visualization Technique (기류 가시화기법을 이용한 방해기류 방향과 속도에 따른 푸쉬풀 후드 효율 평가)

  • Song, Se-Wook;Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank in recent years. Efficiency of push pull hood system is affected by various parameters, such as cross draft, vessel shapes, size of tanks surface, liquid temperature, and so on. Among these, velocity of cross draft might be one of the most influencing factor for determining the ventilation efficiency. To take account of the effect of cross draft velocities over 0.38m/s, a flow adjustment of ${\pm}$20% should be considered into the push and +20% into the pull flow system Although there are many studies about the efficiency evaluation of push pull hood system based on CFDs(Computational Fluid Dynamics) and experiments, there have been no reports regarding the influence of velocities and direction of cross-draft on push-pull hood efficiency. This study was conducted to investigate the influence of cross draft direction and velocities on the capture efficiency of the push-pull ventilation system. Smoke visualization method was used along with mock-up of push-pull hood systems to verify the ventilation efficiency by experiments. When the cross-draft blew from the same origins of the push flows, the efficiency of the system was in it's high value, but it was decreased significantly when the cross-draft came from the opposite side of push flows Moreover, the efficiency of the system dramatically decreased when the cross-draft of open surface tank was faster than 0.4m/s.

Experimental result of Real-time Sonar-based SLAM for underwater robot (소나 기반 수중 로봇의 실시간 위치 추정 및 지도 작성에 대한 실험적 검증)

  • Lee, Yeongjun;Choi, Jinwoo;Ko, Nak Yong;Kim, Taejin;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.108-118
    • /
    • 2017
  • This paper presents experimental results of realtime sonar-based SLAM (simultaneous localization and mapping) using probability-based landmark-recognition. The sonar-based SLAM is used for navigation of underwater robot. Inertial sensor as IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) and external information from sonar image processing are fused by Extended Kalman Filter (EKF) technique to get the navigation information. The vehicle location is estimated by inertial sensor data, and it is corrected by sonar data which provides relative position between the vehicle and the landmark on the bottom of the basin. For the verification of the proposed method, the experiments were performed in a basin environment using an underwater robot, yShark.

Tracking Path Generation of Mobile Robot for Interrupting Human Behavior (행동차단을 위한 이동로봇의 추적경로 생성)

  • Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2013
  • In this paper, we describe a security robot system to control human's behavior in the security area. In order to achieve these goals, we present a method for representing, tracking and human blocking by laserscanner systems in security area, with application to pedestrian tracking in a crowd. When it detects walking human who is for the security area, robot calculates his velocity vector, plans own path to forestall and interrupts him who want to head restricted area and starts to move along the estimated trajectory. While moving the robot continues these processes for adapting change of situation. After arriving at an opposite position human's walking direction, the robot advises him not to be headed more and change his course. The experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Influence of Delay Time and Priming Location on the Blast-Induced Ground Vibration (발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향)

  • Kang, Choo Won;Ryu, Bok Hyun;Choi, Tae Hong
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.97-109
    • /
    • 2014
  • In order to identify the characteristics of the propagation depending on delay time (20, 25 ms) and priming location (top priming, middle priming, bottom priming), test blasts were carried out a total of 4 times using different spacing, burden, drilling length, charge per delay and was derived the formula to predict blast vibration. This study investigated the characteristics of vibration by analysis of the nomogram and prediction of Peak Particle Velocity (PPV) from delay time and priming location by the formula to predict ground vibration. And it analyzed the trends of vibration increase by standards charge 0.5, 1.6, 5, 15 kg. Standards charge is "Blasting design and construction guidelines to road construction" by the Ministry of Land, Infrastructure and Transport. Depending on the charge in favor of vibration control method is proposed. Thus, when the design was to be used as a variable.