• Title/Summary/Keyword: Velocity Control Method

Search Result 1,185, Processing Time 0.032 seconds

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Mobile Control of working robot for a Installed Trolley Cable (전동차 트로이선 가설 작업 로봇의 이동제어)

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeong-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.934-940
    • /
    • 2006
  • The aims of this study is to develop working robot for a installed trolley cable of an electric train and objective of this paper is to implement mobile control of working robot. In this paper an approach to method for scheme of a mobile control system is presented in a dynamic hybrid velocity/tension control of working robot. The working robot is composed the velocity and tension controllers using the concept of two-degrees-of-freedom servo-controller. This robot moved at same time a certain distance to constrain a constant tension and installed a trolley cable of an electric train. To move the robot the velocity control system have design and implemented. Simulation and experimental results are presented to illustrate the validity of designed mobil scheme.

BLDC Motor Control for Industrial Sewing Machine (산업용 재봉기를 위한 BLDC 모터의 제어)

  • Lee, Dong-Hoon;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.189-194
    • /
    • 2000
  • In this paper, we present a BLDC Motor control for needle positioning and velocity control in the industrial sewing machine. In the industrial sewing machine, the fast acceleration control is needed, especially for a person who has a skill in operation of sewing machine for more products. And it is also needed to have a less noise and vibration. But the system which is made in a low price has no feedback system for a current control. Therefore we propose the method of velocity pattern that has an acceleration of velocity and Anti-windup algorithm. By the experiment, we confirmed that these manner have a good performance for low noise, low vibration and fast acceleration in the industrial sewing machine.

  • PDF

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

A Study of High Precision Constant Velocity Control for Spiral Servo Writing in Hard Disk Drive (하드디스크 드라이브의 Spiral Servo Writing을 위한 초정밀 등속 제어 기법 연구)

  • Cho, K.N;Kang, H.J;Lee, C.W;Chung, C.J;Sim, J.S
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 2005
  • According to recent trend, hard disk drive(HDD) has been smaller and less weight. Therefore, it needs new method of writing position information. In this thesis, a new controller that is suitable for SSW is proposed. The controller accepted SSW technology that is used to write position information in current HDD industry. The important condition to perform SSW is to reach constant velocity decided from the head velocity profile as fast as possible. The constant velocity decides the positional accuracy of spiral pattern and setup time decides the capacity of HDD. The head velocity profile as a reference signal must be designed not to cause resonance mode. The proposed controller was designed with consideration of these 3 elements, and it properly works for SSW. The velocity profile designed with SMART control not only minimizes the jerk, but also does not cause the resonance mode of a plant. After designing a conventional PID controller, it compared with electrical spring technique and ZPET technique.

  • PDF

Modified Swimming Pattern to Control Propulsive Force for Biomimetic Underwater Articulated Robot (생체모방형 수중 다관절 로봇의 추진력 제어를 위한 유영 패턴 재생성)

  • Jeong, Seonghwan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.285-292
    • /
    • 2016
  • For articulated swimming robots, there have been no researches about controlling the motion or trajectory following. A control method for articulated swimming robot is suggested by extending a previous algorithm, ESPG (Extended Swimming Pattern Generator). The control method focuses on the situation that continuous pre-determined swimming pattern is applied for long range travelling. In previous studies, there has not been a way to control the propulsive force when a swimming pattern created by ESPG was in progress. Hence, no control could be made unless the swimming pattern was completed even though an error occurred while the swimming pattern was in progress. In order to solve this problem, this study analyzes swimming patterns and suggests a method to control the propulsive force even while the swimming pattern was in progress. The angular velocity of each link is influenced and this eventually modifies the propulsive force. However, The angular velocity is changed, a number of problems can occur. In order to resolve this issue, phase compensation method and synchronization method were suggested. A simple controller was designed to confirm whether the suggested methods are able to control and a simulation has affirmed it. Moreover, it was applied to CALEB 10 (a biomimetic underwater articulated robot) and the result was verified.

Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method (Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계)

  • 박종호;정길도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF

The Seek Control Design with Gain-Scheduling in Hard Disk Drives

  • Hwang, Eun-Ju;Hyun, Chang-Ho;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The increased disk rotational velocity to improve the data transfer rate has raised up many serious problems in its servo control system which should control the position and velocity of a spot relative to a rotating disk. This paper proposes gain-scheduling-based track-seek control for single stage actuator of hard disk drives. Gain scheduling is a technique that can extend the validity of the linearization approach to a range of operating points and one of the most popular approaches to nonlinear control design. The proposed method schedules controller gains to improve the transient response and minimize overshoot during the functions of the read/write head positioning servomechanism for the seek control. The validity of the proposed method is demonstrated through stability analysis and simulation results.

Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode

  • Shibata, Takaaki;Shinohara, Shigenobu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.494-497
    • /
    • 1994
  • We propose a novel velocity detection method of moving object based on a speckle pattern on the target surface using a self-mixing laser diode (SMLD). By this measurement, it was confirmed that the speckle signal has its waveform independent of the target velocity, and has its averaged frequency directly proportional to the target velocity. So it will be possible to detect the velocity of the target transversely translating against the laser light beam using a compact measuring system.

  • PDF

Study on Configuration Design Sensitivity of Noise & Vibration (소음/진동의 컨피규레이션 설계 민감도 연구)

  • 왕세명;기성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.192-198
    • /
    • 1997
  • In the concurrent engineering, the CAD-based design model is necessary for multidisciplinary analysis and for computer-aided manufacturing (CAM). A shape and configuration design velocity field computation of structure has been developed using a computer-aided design (CAD) tool, Pro/ENGINEER. The design Parameterization with CAD tool is to characterize the change in dimensions and movements of geometric control points that govern the shape/orientation of the structural boundary. The boundary velocity is obtained by using a CAD-based finite difference method and the domain velocity field is obtained from finite element analysis (FEA) using the boundary displacement method. In this paper, the continuum configuration DSA for NVH problem, which requires the shape velocity field and the orientation velocity field at the same time, is developed using linear shape functions. For validation of continuum design sensitivity coefficients, design sensitivity coefficients are compared with the coefficients computed using by the finite difference method.

  • PDF