• Title/Summary/Keyword: Velocity Contour

Search Result 100, Processing Time 0.023 seconds

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Cross-Coupled Control for the Friction Compensation of CNC Machines (CNC 공작 기계의 마찰력 보상을 위한 상호 결합 제어)

  • Joo, Jeong-Hong;Lee, Hyun-Chul;Lee, Yun-Jung;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.462-470
    • /
    • 1999
  • In this paper, we proposed a cross-couple controller for compensating nonlinear friction of the X-Y table of CNC machines. Due to the nonlinearity of the frictions, large contour errors, referred to as quadrant glitches, occur when each axis of the X-Y table makes a zero velocity crossing. To reduce the quadrant glitches the friction compensators and nonlinear friction observers for estimating Coulomb frictions are employed in the proposed method. A hyperbolic tangent function is used in reducing the magnitude of quadrant glitches and the CEM (Contour Error Model) is utilized for the estimation of the velocities. The performance of the proposed compensators is evaluated for several trajectories by computer simulations.

  • PDF

Flow Field Measurement of Natural Convection in a Rectangular Cavity Using Laser Speckle Photography (레이저 반점(斑點)을 이용한 사각형(四角形) 공동(空洞)내의 자연대류(自然對流) 유동장(流動場) 측정(測定))

  • Yang, Soong-Hyo;Chung, Woo-Nam;Park, Chan-Kuk;Kang, Yung-Kyu
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 1989
  • A two-dimensional velocity map of natural convection in a rectangular cavity is determined using laser speckle photography. Isovelocity contour drawn by spatial filtering and local velocity by pointwise method are obtained. These results are compared with those of numerical analysis.

  • PDF

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 미치는 영향에 대한 실험적 연구)

  • Rim, In-Won;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.661-667
    • /
    • 2001
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7. According to a wake-passing through the cascade, two velocity deficits appear near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit is caused by a periodic wake and the second one appears after some delayed time. The second velocity deficit may be interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreases the duration time of separation appearance and the lesser loss of aerofoil is resulted.

  • PDF

Large Eddy Simulation of Turbulent Pipe Flow (LES에 의한 원관 내 난류의 유동 해석)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.437-446
    • /
    • 2003
  • A large eddy simulation (LES) is performed for turbulent pipe flow. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The effects of grid fineness which can be well prediction of turbulent behavior in near wall region is investigated. The subgrid scale turbulent models are applied and validated emphasis is placed on the flow details of turbulent pipe flow The calculated Reynolds number is 360 based on the wall shear velocity and the inlet pipe diameter. The predicted turbulent statistics are evaluated by comparing with the DNS data of turbulent pipe flow Performed by Eggels et al. The agreement of LES with DNS data is shown to be satisfactory. The proper grid fineness of the well prediction of turbulent pipe flow is suggested and the turbulent behavior is analyzed by depict the contour plot of fluctuating velocity components.

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 매치는 영향에 대한 실험적 연구)

  • Im, In-Won;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7 Corresponding to a wake-passing through the cascade, two velocity deficits appeared near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit was caused by a periodic wake and the second one appeared after some delayed time. The second velocity deficit was interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreased the duration time of separation appearance and the lesser losses of blade were resulted.

A Study on the Heat Tranfer Enhancement of Heat Exchangers with Corrugated Wall (주름진 판형 열교환기의 성능향상에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.115-118
    • /
    • 2002
  • The present study deals with CFD analysis of a plastic heat exchanger with corrugated wall. This exchanger has sinusoidal corrugations, and the flow through the exchanger is three dimensional. In addition, CFX-5.4, a commercial code utilizing unstructured mesh, was used as a computational method for solving RANS(Reynolds-Averaged Navier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. The factors to affect the efficiency of a plastic heat exchanger are heat conductivity, flow characteristics and so on. For those two factors, heat conductivity is fixed by the wall material. Therefore, the How along the corrugation affects the efficiency more, provided the same material. In conclusion, the heat transfer enhancement of a plastic heat exchanger with corrugated wall can be recognized from the flow characteristics such as velocity streamline, local heat transfer coefficient, velocity contour, and pressure contour. To confirm the results, both of the measured and the computational data for pressure loss were compared with each other, and they were identical.

  • PDF

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

Experimental Study on the Characteristics of Lifted Flames in Laminar Coflow Jets of Propane (층류 프로판 동축류 제트에서 부상화염의 특성에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate solutions for velocity and concentration accounting virtual origins have been proposed for coflow jets to analyze the behavior of liftoff height. From the measurement of Rayleigh intensity for probing the concentration field of propane, the validity of the approximate solutions was substantiated. From the images of OH PLIF and CH chemiluminescence and the Rayleigh concentration measurement, it has been shown that the positions of maximum luminosity in direct photography coincide with the tribrachial points, which were located along the stoichiometric contour. The liftoff height in coflow jets was found to increase highly nonlinearly with jet velocity and was sensitive to coflow velocity.

  • PDF

Lifted Flames in Laminar Coflow Jets of Propane (층류 동축류 제트에서의 프로판 부상 화염에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.61-67
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate equations for velocity and concentration with virtual origins have been proposed to analyze the behavior of flames in coflow jets. Measuring Rayleigh intensity to investigate the concentration field. proposed approximate equations were confirmed. By using the results of OH PLIF, direct photography and Rayleigh scattering measurement, it is shown that the locations of maximum intensity in direct photography coincide with the tribrachial points in axisymmetric jets and the tribrachial points travel on the stoichiometric contour. For coflow jets, the experimental results of liftoff height have been successfully correlated with nozzle exit velocity using predicted behavior from proposed approximated equations. These results substantiate the stabilization mechanism in coflow jet is based on the balance between flame propagation speed and axial flow velocity, same as for the free jets.

  • PDF