• Title/Summary/Keyword: Vehicular network utility model

Search Result 2, Processing Time 0.018 seconds

Uplinks Analysis and Optimization of Hybrid Vehicular Networks

  • Li, Shikuan;Li, Zipeng;Ge, Xiaohu;Li, Yonghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.473-493
    • /
    • 2019
  • 5G vehicular communication is one of key enablers in next generation intelligent transportation system (ITS), that require ultra-reliable and low latency communication (URLLC). To meet this requirement, a new hybrid vehicular network structure which supports both centralized network structure and distributed structure is proposed in this paper. Based on the proposed network structure, a new vehicular network utility model considering the latency and reliability in vehicular networks is developed based on Euclidean norm theory. Building on the Pareto improvement theory in economics, a vehicular network uplink optimization algorithm is proposed to optimize the uplink utility of vehicles on the roads. Simulation results show that the proposed scheme can significantly improve the uplink vehicular network utility in vehicular networks to meet the URLLC requirements.

Task offloading under deterministic demand for vehicular edge computing

  • Haotian Li ;Xujie Li ;Fei Shen
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.627-635
    • /
    • 2023
  • In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.