• Title/Summary/Keyword: Vehicular network

Search Result 295, Processing Time 0.027 seconds

Packet Transmission Scheme for Collecting Traffic Information based on Vehicle Speed in u-TSN system (u-TSN 시스템의 교통정보 수집을 위한 차량 이동속도에 따른 패킷 전송 방안)

  • Bae, Jeong-Kyu;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.35-41
    • /
    • 2010
  • The ubiquitous-transportation sensor network (u-TSN) system is a next generation transportation system that provides traffic information through analysis and processing periodic information from vehicles. In this paper, we propose the adequate transmission scheme from vehicles for collecting vehicular information. The conventional scheme is transmitting each vehicle information every 0.1s. A variable transmission period scheme is proposed in this paper according to vehicle speed. The proposed and conventional schemes are compared with computer simulations.

Opportunistic Broadcast Protocol for Frequent Topology Changes in Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 빈번한 토폴로지 변경에 적합한 기회적 브로드캐스트 프로토콜)

  • Cha, Si-Ho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The message propagation between vehicles must be efficiently performed to quickly transmit information between vehicles in vehicle ad hoc networks (VANETs). Broadcasting can be the most effective solution for propagating these messages. However, broadcasting can cause broadcast storm problems, which can reduce the performance of the overall network. Therefore, rapid information delivery in VANET requires a method that can propagate messages quickly without causing the broadcast storm problems. This paper proposes a lightweight and opportunistic broadcast (LOB) protocol that leverages the features of opportunistic routing to propagate messages quickly while minimizing the load on the network in VANETs where the network topology changes frequently. LOB does not require any routing information like greedy forwarding scheme, and neighboring nodes at the farthest distance within the range of transmission nodes are likely to be selected as forwarding nodes, and multiple forwarding candidate nodes like opportunistic routing scheme can increase packet transmission rates. Simulation results using ns-2 showed that LOB outperformed existing broadcast protocols in terms of packet rate and packet delay.

Whale Optimization Algorithm and Blockchain Technology for Intelligent Networks

  • Sulthana, Shazia;Reddy, BN Manjunatha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.157-164
    • /
    • 2022
  • The proposed privacy preserving scheme has identified the drawbacks of existing schemes in Vehicular Networks. This prototype enhances the number of nodes by decreasing the cluster size. This algorithm is integrated with the whale optimization algorithm and Block Chain Technology. A set of results are done through the NS-2 simulator in the direction to check the effectiveness of proposed algorithm. The proposed method shows better results than with the existing techniques in terms of Delay, Drop, Delivery ratio, Overhead, throughout under the denial of attack.

An Adaptive Incentive/Topology Control Scheme for Stimulating Real time Data Forwarding in VANET Environment (VANET 환경에서 실시간 데이터 포워딩 진작을 위한 적응형 인센티브/토폴로지 제어 기법)

  • Bae, Seo-Yun;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.7
    • /
    • pp.1-8
    • /
    • 2011
  • Vehicular Ad-hoc Network (VANET) is a special form of Mobile Ad-hoc Network designed to provide communications among nearby vehicles without communications infrastructure. Some characteristics in VANET environment such as high mobility, dynamic topology and selfishness of nodes can cause degradation of network quality. In this paper, we propose an adaptive incentive/topology control scheme to improve network quality in VANET by stimulating real time data forwarding and reporting changes of network topology. In the proposed scheme, an incentive suggested by the source node is updated in real time simultaneously with data transmission to stimulate real time data forwarding. In addition, when the order of the nodes in the path is changed, nodes which report the changes of network topology will get an additional incentive. By computer simulation, it is shown that the proposed incentive/topology control scheme outperforms the conventional schemes with respect to data delivery time and data delivery ratio.

A Receiver-Driven Loss Recovery Mechanism for Video Dissemination over Information-Centric VANET

  • Han, Longzhe;Bao, Xuecai;Wang, Wenfeng;Feng, Xiangsheng;Liu, Zuhan;Tan, Wenqun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3465-3479
    • /
    • 2017
  • Information-Centric Vehicular Ad Hoc Network (IC-VANET) is a promising network architecture for the future intelligent transport system. Video streaming applications over IC-VANET not only enrich infotainment services, but also provide the drivers and pedestrians real-time visual information to make proper decisions. However, due to the characteristics of wireless link and frequent change of the network topology, the packet loss seriously affects the quality of video streaming applications. In this paper, we propose a REceiver-Driven loss reCOvery Mechanism (REDCOM) to enhance video dissemination over IC-VANET. A Markov chain based estimation model is introduced to capture the real-time network condition. Based on the estimation result, the proposed REDCOM recovers the lost packets by requesting additional forward error correction packets. The REDCOM follows the receiver-driven model of IC-VANET and does not require the infrastructure support to efficiently overcome packet losses. Experimental results demonstrate that the proposed REDCOM improves video quality under various network conditions.

Survey on Disrupt-/Delay-Tolerant Networking in Vehicular Networks (차량네트워크에서 지연감내형 네트워킹 연구동향)

  • Jung, H.Y.;Jeong, J.H.;Choo, C.C.;Hong, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.4
    • /
    • pp.67-77
    • /
    • 2017
  • 최근 이슈가 되고 있는 자율주행차(Autonomous vehicle 또는 Self-driving car)를 실현하기 위해서는, 다양한 환경에서도 차량에 대한 끊김 없는 연결을 제공하는 커넥티드카(Connected car) 기술이 필수적이다. 현재 커넥티드카를 구현하기 위한 차량 네트워크(Vehicular network) 기술은 교통시스템 인프라 기반의 단일홉(Single-hop) 무선통신 기술이 주를 이루고 있다. 이러한 단일홉 통신은 커버리지가 교통시스템 인프라가 구축된 지역으로 제한된다. 따라서 차량 네트워크가 현재보다 더욱 넓은 지역을 커버하기 위해서는 차량 자체가 이동형 라우터 역할을 수행하여 차량 간의 전달을 통해 정보를 원거리로 전달할 수 있는 다중홉(Multi-hop) 통신 도입이 필요하다. 다중홉 차량 네트워크는 차량의 높은 동적 특성으로 인해 다수의 도전적인 기술적 이슈들을 가진다. 본고에서는 이러한 기술 이슈 중 차량 네트워크의 높은 이동성으로 발생할 수 있는 종단 노드 간 비연결성을 해결할 수 있는 기술인 지연감내형 차량 네트워킹(Delay-tolerant vehicular networking) 기술에 대한 주요 연구 동향을 살펴보고자 한다. 이를 위해 먼저 지연감내형 차량 네트워킹의 기술적 배경 및 주요 관련 기술들을 분석하고 이를 기반으로 향후 연구개발이 필요한 기술 이슈들을 정리한다.

A Distributed LT Codes-based Data Transmission Technique for Multicast Services in Vehicular Ad-hoc Networks

  • Zhou, Yuan;Fei, Zesong;Huang, Gaishi;Yang, Ang;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.748-766
    • /
    • 2013
  • In this paper, we consider an infrastructure-vehicle-vehicle (I2V2V) based Vehicle Ad-hoc Networks (VANETs), where one base station multicasts data to d vehicular users with the assistance of r vehicular users. A Distributed Luby Transform (DLT) codes based transmission scheme is proposed over lossy VANETs to reduce transmission latency. Furthermore, focusing on the degree distribution of DLT codes, a Modified Deconvolved Soliton Distribution (MDSD) is designed to further reduce the transmission latency and improve the transmission reliability. We investigate the network behavior of the transmission scheme with MDSD, called MDLT based scheme. Closed-form expressions of the transmission latency of the proposed schemes are derived. Performance simulation results show that DLT based scheme can reduce transmission latency significantly compared with traditional Automatic Repeat Request (ARQ) and Luby Transform (LT) codes based schemes. In contrast to DLT based scheme, the MDLT based scheme can further reduce transmission latency and improve FER performance substantially, when both the source-to-relay and relay-to-sink channels are erasure channels.

Priority Based Clustering Algorithm for VANETs (VANET 환경을 위한 우선순위 기반 클러스터링 알고리즘)

  • Kim, In-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.637-644
    • /
    • 2020
  • VANET (Vehicular Ad Hoc Networks) is a network between vehicles and between vehicles and infrastructure. VANET-specific characteristics such as high mobility, movement limitation, and signal interference by obstacles make it difficult to provide stable VANET services. To solve this problem, this paper proposes a vehicle type-based priority clustering method that improves the existing bus-based clustering. The proposed algorithm constructs a cluster by evaluating the priority, link quality, and connectivity based on the vehicle type, expected communication lifetime, and link degree of neighbor nodes. It tries to simplify the process of selecting a cluster head and increase cluster coverage by utilizing a predetermined priority based on the type of vehicle. The proposed algorithm is expected to become the basis for activating various services by contributing to providing stable services in a connected car environment.

Multihop Vehicle-to-Infrastructure Routing Based on the Prediction of Valid Vertices for Vehicular Ad Hoc Networks

  • Shrestha, Raj K.;Moh, Sangman;Chung, IlYong;Shin, Heewook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.243-253
    • /
    • 2010
  • Multihop data delivery in vehicular ad hoc networks (VANETs) suffers from the fact that vehicles are highly mobile and inter-vehicle links are frequently disconnected. In such networks, for efficient multihop routing of road safety information (e.g. road accident and emergency message) to the area of interest, reliable communication and fast delivery with minimum delay are mandatory. In this paper, we propose a multihop vehicle-to-infrastructure routing protocol named Vertex-Based Predictive Greedy Routing (VPGR), which predicts a sequence of valid vertices (or junctions) from a source vehicle to fixed infrastructure (or a roadside unit) in the area of interest and, then, forwards data to the fixed infrastructure through the sequence of vertices in urban environments. The well known predictive directional greedy routing mechanism is used for data forwarding phase in VPGR. The proposed VPGR leverages the geographic position, velocity, direction and acceleration of vehicles for both the calculation of a sequence of valid vertices and the predictive directional greedy routing. Simulation results show significant performance improvement compared to conventional routing protocols in terms of packet delivery ratio, end-to-end delay and routing overhead.

DTCF: A Distributed Trust Computing Framework for Vehicular Ad hoc Networks

  • Gazdar, Tahani;Belghith, Abdelfettah;AlMogren, Ahmad S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1533-1556
    • /
    • 2017
  • The concept of trust in vehicular ad hoc networks (VANETs) is usually utilized to assess the trustworthiness of the received data as well as that of the sending entities. The quality of safety applications in VANETs largely depends on the trustworthiness of exchanged data. In this paper, we propose a self-organized distributed trust computing framework (DTCF) for VANETs to compute the trustworthiness of each vehicle, in order to filter out malicious nodes and recognize fully trusted nodes. The proposed framework is solely based on the investigation of the direct experience among vehicles without using any recommendation system. A tier-based dissemination technique for data messages is used to filter out non authentic messages and corresponding events before even going farther away from the source of the event. Extensive simulations are conducted using Omnet++/Sumo in order to investigate the efficiency of our framework and the consistency of the computed trust metrics in both urban and highway environments. Despite the high dynamics in such networks, our proposed DTCF is capable of detecting more than 85% of fully trusted vehicles, and filtering out virtually all malicious entities. The resulting average delay to detect malicious vehicles and fraudulent data is showed to be less than 1 second, and the computed trust metrics are shown to be highly consistent throughout the network.