• Title/Summary/Keyword: Vehicular ad Hoc Network Cloud Computing

Search Result 5, Processing Time 0.022 seconds

Supplements an Initial Creation and User Addition in VANET Cloud Architecture (초기 생성과 사용자 추가를 고려한 VANET 클라우드 아키텍처)

  • Kim, Taehyeong;Song, JooSeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.12
    • /
    • pp.449-454
    • /
    • 2014
  • While the era of driverless car has come, Vehicular Ad hoc NETwork(VANET) is getting important. Original VANET has a limit that cannot use computation power, storage space of On Board Unit(OBU) installed in a vehicle efficiently. VANET cloud computing(VCC) solves the limit to focus on using abilities of each vehicle. This article proposes VCC architecture for supplementing user addition and initial cloud creation that have been researched insufficiently.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

VANET cloud computing architecture (VANET 클라우드 컴퓨팅 아키텍처)

  • Kim, TaeHyeong;Song, JooSeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.142-145
    • /
    • 2014
  • 지금까지 교통사고 예방을 위한 도로 정보 등을 제공하기 위해 차량 간 통신 네트워크인 Vehicular Ad hoc NETwork (VANET)연구가 활발히 진행되어왔다. 그러나 각 자동차의 On board unit (OBU)의 계산 능력, 저장 공간 등을 효율적으로 사용하는 연구는 진행되어 오지 않았다. 2011년 Olariu et al. 가 cloud computing을 기존의 VANET에 적용하는 개념인 Autonomous Vehicular cloud[1]를 제시하면서 새로운 VANET 연구의 새로운 장을 열었다. 기존의 VANET연구는 지금까지의 각각의 자동차의 통신 성능을 높이는 것에 초점을 맞추었지만, 새로운 아이디어는 높아진 각 자동차의 능력을 효율적으로 이용하여, 유용하게 사용하는 것에 초점을 맞추었다. 이것은 Intelligent Transport System (ITS)의 구축에 한발 더 나아갈 수 있게 하였다. 그 이후 VANET cloud computing (VCC)에 관한 많은 연구들이 진행되었으나 보안적인 측면에서는 아직 연구가 미흡한 실정이다. 그래서 본 논문에서는 보안을 보완한 VCC 아키텍처를 제안한다.

Cooperation-Aware VANET Clouds: Providing Secure Cloud Services to Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 2014
  • Over the last couple of years, traditional VANET (Vehicular Ad Hoc NETwork) evolved into VANET-based clouds. From the VANET standpoint, applications became richer by virtue of the boom in automotive telematics and infotainment technologies. Nevertheless, the research community and industries are concerned about the under-utilization of rich computation, communication, and storage resources in middle and high-end vehicles. This phenomenon became the driving force for the birth of VANET-based clouds. In this paper, we envision a novel application layer of VANET-based clouds based on the cooperation of the moving cars on the road, called CaaS (Cooperation as a Service). CaaS is divided into TIaaS (Traffic Information as a Service), WaaS (Warning as a Service), and IfaaS (Infotainment as a Service). Note, however, that this work focuses only on TIaaS and WaaS. TIaaS provides vehicular nodes, more precisely subscribers, with the fine-grained traffic information constructed by CDM (Cloud Decision Module) as a result of the cooperation of the vehicles on the roads in the form of mobility vectors. On the other hand, WaaS provides subscribers with potential warning messages in case of hazard situations on the road. Communication between the cloud infrastructure and the vehicles is done through GTs (Gateway Terminals), whereas GTs are physically realized through RSUs (Road-Side Units) and vehicles with 4G Internet access. These GTs forward the coarse-grained cooperation from vehicles to cloud and fine-grained traffic information and warnings from cloud to vehicles (subscribers) in a secure, privacy-aware fashion. In our proposed scheme, privacy is conditionally preserved wherein the location and the identity of the cooperators are preserved by leveraging the modified location-based encryption and, in case of any dispute, the node is subject to revocation. To the best of our knowledge, our proposed scheme is the first effort to offshore the extended traffic view construction function and warning messages dissemination function to the cloud.