• Title/Summary/Keyword: Vehicle-to-infrastructure(V2I)

Search Result 65, Processing Time 0.022 seconds

PMIPv6-based Mobility Management Scheme for Vehicular Communication Networks (차량통신망 지원을 위한 PMIPv6 기반 이동성 관리 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • This paper proposes mobility management schemes providing Internet session continuity to moving vehicles in the V2I (Vehicle-to-Infrastructure) environment of the vehicular communication networks. Since PMIPv6 is localized mobility management protocol, PMIPv6 can not be directly applied to the vehicular communication network requiring global mobility coverage. Therefore, in this paper, we derive two scenarios of applying PMIPv6 to vehicular communication network environment and propose PMIPv6-based global mobility management schemes for those scenarios. Through simulations, we show that the proposed schemes can significantly decrease the Internet service discontinuity.

Study on Parallel Processing of ECDSA Verification for V2X Communication (V2X 통신을 위한 ECDSA 서명 검증 병렬처리 연구)

  • Lee, Sokjoon;Choi, Joongyong;Chung, Byungho;Kwon, Hyeokchan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.216-217
    • /
    • 2018
  • IEEE 1609.2 표준은 WAVE (Wireless Access in Vehicular Environment) 표준에서 차량간(V2V, Vehicle-to-Vehicle) 혹은 차량과 인프라간(V2I, Vehicle-to-Infrastructure)통신 상의 응용 메시지 보호를 위해 제정되었다. 이 표준은 메시지 이증 및 무결성 검증을 위하여 NIST p256 타원 곡선 커브 기반의 ECDSA 전자서명 기법을 사용한다. 매우 복잡한 도신 상의 출퇴근 환경에서는 수백대의 자동차가 전송하는 메시지를 정상적으로 처리하기 위하여, 차량의 OBU(On-Board Unit) 혹은 노상의 RSU(Road-Side Unit)에서 서명된 메시지의 검증 성능이 매우 중요한 이슈가 될 수 있다. 본 논문에서는 V2X 통신에서 효율적인 ECDSA 서명 검증을 위하여, OBU 혹은 RSU 환경에서 CPU 상의 병렬 처리 성능을 테스트 한 후 시사점을 살펴본다.

A Message Authentication Scheme for V2V message based on RSSI with anonymity (익명성을 제공하는 RSSI기반 V2V 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.18C no.4
    • /
    • pp.207-212
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) is a communication technology between vehicles and vehicles(V2V) or vehicles and infrastructures(V2I) for offering a number of practical applications. Considering the importance of communicated information through VANET, data authentication, confidentiality and integrity are fundamental security elements. Recently, to enhance a security of VANET in various circumstances, message authentication is widely researched by many laboratories. Among of them, Zhang. et. al. is an efficient method to authenticate the message with condition of anonymity in dense space. In the scheme, to obtain the vehicular ID with condition of anonymity, the k-anonymity is used. However it has a disadvantage, which conducts hash operations in case of determining the vehicular ID. In the paper, we present a location based algorithm using received signal strength for the location based authentication and encryption technique as well, and to enhance the accuracy of algorithm we apply a location determination technique over the 3-dimensional space.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Session Key Distribution Scheme in V2I of VANET using Identity-Based Cryptography (VANET의 V2I 환경에서 IBC를 이용한 세션키 분배 기법)

  • Roh, Hyo-Sun;Jung, Sou-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • This paper proposes a session key distribution scheme on non-interactive key distribution algorithm of Identity-based cryptography in V2I of VANET. In the current VANET, IEEE 802.11i is used to provide secure data communication between the vehicle and infrastructure. However, since the 4-way handshake procedure reply when the vehicle handover to another RSU/AP, IEEE 802.11i increases the communication overhead and latency. The proposed scheme using non-interactive key distribution algorithm of Identity-based cryptography provided session key generation and exchange without message exchange and reduced communication overhead and latency than the IEEE 802.11i.

A Secure Mobile Message Authentication Over VANET (VANET 상에서의 이동성을 고려한 안전한 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1087-1096
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) using wireless network is offering the communications between vehicle and vehicle(V2V) or vehicle and infrastructure(V2I). VANET is being actively researched from industry field and university because of the rapid developments of the industry and vehicular automation. Information, collected from VANET, of velocity, acceleration, condition of road and environments provides various services related with safe drive to the drivers, so security over network is the inevitable factor. For the secure message authentication, a number of authentication proposals have been proposed. Among of them, a scheme, proposed by Jung, applying database search algorithm, Bloom filter, to RAISE scheme, is efficient authentication algorithm in a dense space. However, k-anonymity used for obtaining the accurate vehicular identification in the paper has a weak point. Whenever requesting the righteous identification, all hash value of messages are calculated. For this reason, as the number of car increases, a amount of hash operation increases exponentially. Moreover the paper does not provide a complete key exchange algorithm while the hand-over operation. In this paper, we use a Received Signal Strength Indicator(RSSI) based velocity and distance estimation algorithm to localize the identification and provide the secure and efficient algorithm in which the problem of hand-over algorithm is corrected.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.

Performance Evaluation of Handover Mechanism in WAVE Communication System (WAVE 통신 시스템에서의 핸드오버 메커니즘 성능 분석)

  • Jung, Han-Gyun;Lim, Ki-Taeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.43-53
    • /
    • 2014
  • Supporting handover functionality in V2I communication environments is important to provide higher quality service to users on the road. Wireless Access in Vehicular Environments(WAVE) standards define some features that devices can communicate with each other more efficiently in vehicular environments but they do not include handover function for providing effective V2I services. In this paper, we introduce a handover scheme in WAVE system and show the performance result of proposed scheme.

A multi-hop Communication Scheme in Vehicular Communication Systems (차량통신시스템에서의 멀티홉 전송 방법)

  • Cho, Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.111-116
    • /
    • 2012
  • Vehicular communication is one of main convergence technologies which combines information and communication technology (ICT) with vehicle and road industries. In general, vehicular communication adopts IEEE 802.11p standard which is commonly referred as wireless access in vehicular environments (WAVE). In this paper, we investigate a multi-hop communication scheme for IEEE 802.11p based communication systems which support both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications. First, we briefly overview the performance of IEEE 802.11p based communication systems. Then, a multi-hop communication scheme is introduced for both broadcast and unicast. The performance of proposed scheme is presented via experimental measurements.

Service Realization of WAVE based Vehicular Communication Systems in the Testbed (테스트베드상에서 WAVE기반 차량통신 시스템의 서비스 구현)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1589-1594
    • /
    • 2013
  • Vehicular communication is one of representative convergence technology which combines information technology and vehicle industry. Wireless Access in Vehicular Environments (WAVE) technology is vehicular communication standard which is widely used in the world. In this paper, we introduce service realization of WAVE based vehicular communication systems in the practical testbed. We review the overall WAVE based systems in brief and introduce the testbed. Then, we investigate various applications using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Based on realization of systems, we discuss practical implementation issues and the convergence area of WAVE systems.