• Title/Summary/Keyword: Vehicle-to-Vehicle communication

Search Result 1,697, Processing Time 0.04 seconds

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

SIMULATION IN AUTOMOBILE INFORMATION AND COMMUNICATION SYSTEMS

  • Takaba, Sadao
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1991.10a
    • /
    • pp.41-77
    • /
    • 1991
  • A large number of R & D projects in automobile information and communication systems have been achieved in these twenty years to improve various aspects on automobile usage. Examples on simulation for evaluation of these systems such as these on road to vehicle communication, inter-vehicle communication, and vehicle guidance are shown.

  • PDF

The analysis of technology of the connected car (커넥티드 카의 기술 분석)

  • Shim, Hyun-Bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.211-215
    • /
    • 2015
  • It comes into the spotlight as the new Blue Ocean in which the connected car industry in which the car and mobile communication technology is convergence. All sorts of infortainments services connecting with the portable electronic device(Smart phone, tablet PC, and MP3 player) and car are rapidly grown. The Connected car emphasizes the vehicle connectivity with the concept that the car has communication with the around on a real time basis and it provides the safety and expedience to the operator and using the thing of Internet (IoT) in the car and supports the application, presently, the entertainment service including the real-time Navigation, parking assistant function, not only the remote vehicle control and management service but also Email, multimedia streaming service, SNS and with the platform. Intelligent vehicle network is studied as the kind according to MANET(Mobile Ad Hoc Network) for the safety operation of the cars of the road and improving the efficiency of the driving. The intelligent vehicle network is comprised for the driving information offering changing rapidly of the communication(V2V: Vehicle to Vehicle) between the car and the car, communication(V2I : Vehicle to Infrastructure) between the infrastructure and the car, and V2X (Vehicle to Nomadic).

  • PDF

Greedy Anycast Forwarding Protocol based on Vehicle Moving Direction and Distance (차량의 이동 방향과 거리 기반의 그리디 애니캐스트 포워딩 프로토콜)

  • Cha, Siho;Lee, Jongeon;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • Vehicular ad-hoc networks (VANETs) cause link disconnection problems due to the rapid speed and the frequent moving direction change of vehicles. Link disconnection in vehicle-to-vehicle communication is an important issue that must be solved because it decreases the reliability of packet forwarding. From the characteristics of VANETs, greedy forwarding protocols using the position information based on the inter-vehicle distance have gained attention. However, greedy forwarding protocols do not perform well in the urban environment where the direction of the vehicle changes greatly. It is because greedy forwarding protocols select the neighbor vehicle that is closest to the destination vehicle as the next transmission vehicle. In this paper, we propose a greedy anycast forwarding (GAF) protocol to improve the reliability of the inter-vehicle communication. The proposed GAF protocol combines the greedy forwarding scheme and the anycast forwarding method. Simulation results show that the GAF protocol can provide a better packet delivery rate than existing greedy forwarding protocols.

A Vehicle-to-Vehicle Communication Protocol Scheme for Forwarding Emergency Information in Intelligent Cars Transportation Systems (지능형 차량 전송시스템에서 긴급정보 전송을 위한 Vehicle-to-Vehicle 통신 프로토콜)

  • Kim, Kyung-Jun;Cha, Byung-Rae;Kim, Chul-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.70-80
    • /
    • 2007
  • Inter-vehicular communication suffers from a variety of the problem on the road, resulting in large delay in propagating emergency warning. An energy depletion as well as a transmission delay may induced by traffic accident. A transmission delay are caused by direct contention from nodes that can hear each other or indirect contention from nodes that can not hear each other, but simultaneously transmit to the same destination. A variety of works have been researched to solve the transmission delay and energy consumption problem in intelligent cars transportation systems. We consider a vehicle-to-vehicle communication protocol for disseminating an emergency information that include end-to-end and energy efficient transmission. In this paper, we propose A vehicle-to-vehicle communication protocol scheme for dissemination emergency information in intelligent cars communication based on IEEE 802.15.3 wireless personal area networks. Results from a simulation study reveal that our scheme can achieves low latency in delivering emergency warnings, and efficiency in consuming energy in stressful road scenarios.

  • PDF

A development of the Vehicle-To-Vehicle communication system using the Dedicated Short Range Communication technology (근거리 무선통신 기술 기반 차량간통신 시스템 개발)

  • Rhee Eung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.6-13
    • /
    • 2006
  • In this paper, we studied vehicle to vehicle (VTV) communication system using DSRC of 5.8 GHz bands. Nowadays, in the road traffic system is going intelligent and advancing, communication between driving vehicle is very important technology for ITS. We can contrive smoothness and safety traffic flowing by exchanging information about velocity, location, braking and driving condition of nearby vehicles. Therefore, we developed and verified the system which required for the communication among vehicles using DSRC technology of 5.8 GHz band hasa 1 Mbps data rate in the high mobility condition. For this, we developed DSRC modem, data link layer and logic link layer to make it possible that communication between vehicles of perfectly operation, and developed application service program for VTV communication. We performed to communication test in the general road and ascent road. In case of the general mad, obtained VTV communication results are more than number of 17 with in 300 m LOS coverage, and total communication time are $2.34{\sim]18.7$ msec that considered maximum 8-transaction. We blow that obtained results can be used VTV communication or the in areas form the feasibility road test as a function or various conditions. In the future, this system is very useful of advanced safety vehicle (ASV) and super smart vehicle system (SSVS) and so on.

Performance Analysis for Relay System of Fixed-Path Vehicle (고정 경로 차량의 중계기화에 대한 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • In this paper, we proposed scheme that obtain diversity gain in the cooperative communication to mitigate, applied to the effects of fading in the vehicle communication. Relay used bus that can available in the city environment. In addition, we applied the double rayleigh fading environment so that can applied in real-environments. Therefore, proposed scheme through this paper applied to vehicle communication, user can acquire a high quality service and the operation efficiency of the network is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate.

Data Dissemination in LTE-D2D Based Vehicular Network (LTE-D2D 차량 네트워크에서 정보 전달 방법)

  • Shim, Yong-Hui;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.602-612
    • /
    • 2015
  • Current IEEE 802.11p which is suggested for vehicle to vehicle communication supports one hop communication. Thus, it has a limitation to carry out efficient data dissemination. In this thesis, we suggest LTE-D2D based vehicle network to provide efficient data dissemination in the vehicle environment. In this network architecture, we use name based message with IP packet options and we put the intermediate vehicle node called 'super vehicle node' and each normal vehicle node in the cell requests data to the super vehicle node. The super vehicle node responses data to the normal vehicle node. Performance analysis is based mathematical modeling. We compare LTE cellular network to LTE-D2D based vehicle network about throughput according to packet delivery time.

A Study on the Improvement of e-Call Services Using V2N(Vehicle to Nomadic Device) Technology (V2N(Vehicle to Nomadic Device) 기술을 이용한 e-Call 서비스 개선에 관한 연구)

  • Choi, Su-min;Shin, Yong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.321-324
    • /
    • 2018
  • Recently, the evolution of V2X (Vehicle to Everything) technology is accelerating. In particular, it can be seen that C-V2X (Cellular V2X) technology and services combined with mobile telecommunication network are developing rapidly. However, in Korea, e-Call and emergency communication services are inferior to the developed communication technologies and the proportion of vehicles arriving at Golden Hour is considerably low. Therefore, this paper designed the communication architecture with C-V2X and Android operating systems, and presented ways to improve existing e-Call services using V2N (Vehicle to Nomadic Device) communication based on it.

  • PDF

Vehicle Positioning System based on Personal Cellular Phone and GPS (Personal Cellular Phone과 GPS를 이용한 차량 위치 측정 시스템)

  • 이지홍;이원희
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.157-160
    • /
    • 2002
  • For a company operating lots of vehicle, such as taxi companies or delivery company, a system telling the position of each vehicle is essential. Conventional methods are based on personal communication between a operator in head-office and driver at the car. Since driver cannot respond to the communication while he drives or when lie is out of car. the communication often fails. So, a system identifying and reporting the vehicle position offers groat help to those kind of company.

  • PDF