• Title/Summary/Keyword: Vehicle-to-Vehicle communication

Search Result 1,701, Processing Time 0.03 seconds

Optical Vehicle to Vehicle Communications for Autonomous Mirrorless Cars

  • Jin, Sung Yooun;Choi, Dongnyeok;Kim, Byung Wook
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Autonomous cars require the integration of multiple communication systems for driving safety. Many carmakers unveil mirrorless concept cars aiming to replace rear and sideview mirrors in vehicles with camera monitoring systems, which eliminate blind spots and reduce risk. This paper presents optical vehicle-to-vehicle (V2V) communications for autonomous mirrorless cars. The flicker-free light emitting diode (LED) light sources, providing illumination and data transmission simultaneously, and a high speed camera are used as transmitters and a receiver in the OCC link, respectively. The rear side vehicle transmits both future action data and vehicle type data using a headlamp or daytime running light, and the front vehicle can receive OCC data from the camera that replaces side mirrors so as not to prevent accidents while driving. Experimental results showed that action and vehicle type information were sent by LED light sources successfully to the front vehicle's camera via the OCC link and proved that OCC-based V2V communications for mirrorless cars can be a viable solution to improve driving safety.

A Message Authentication and Key Distribution Mechanism Secure Against CAN bus Attack (CAN 버스 공격에 안전한 메시지 인증 및 키 분배 메커니즘)

  • Cho, A-Ram;Jo, Hyo Jin;Woo, Samuel;Son, Young Dong;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1057-1068
    • /
    • 2012
  • According to advance on vehicle technology, many kinds of ECU(Electronic Control Unit) are equipped inside the vehicle. In-vehicle communication among ECUs is performed through CAN(Controller Area Networks). CAN have high reliability. However, it has many vulnerabilities because there is not any security mechanism for CAN. Recently, many papers proposed attacks of in-vehicle communication by using these vulnerabilities. In this paper, we propose an wireless attack model using a mobile radio communication network. We propose a secure authentication mechanism for in-vehicle network communication that assure confidentiality and integrity of data packets and also protect in-vehicle communication from the replay attack.

A vehicle Diagnosis and Control System via Mobile Network

  • Choi, Yong-Wun;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.85-90
    • /
    • 2005
  • The advance of mobile and telematics technologies has produced vehicles with various convenient services for drivers. Specifically lots of researches and several technologies have been developed to provide services of a remote vehicle diagnosis and control. The existing and representative product for a vehicle control is a RCS (remote control system), but it has a problem of short control distance and fragile security. In this paper, a telematics terminal embedded with CDMA and GPS is designed, which can be connected to the Internet. It allows a driver with a cellular phone to remotely diagnosis and control a vehicle via wireless network and SMS.

  • PDF

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications (차량 안전 통신을 위한 새로운 혼잡 제어 알고리즘 제안)

  • Yi, Wonjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.125-132
    • /
    • 2017
  • Vehicular safety service reduces traffic accidents and traffic congestion by informing drivers in advance of threats that may occur while driving using vehicle-to-vehicle (V2V) communications in a wireless environment. For vehicle safety services, every vehicle must broadcasts a Basic Safety Message(BSM) periodically. In congested traffic areas, however, network congestion can easily happen, reduce the message delivery ratio, increase end-to-end delay and destabilize vehicular safety service system. In this paper, to solve the network congestion problem in vehicle safety communications, we approximate the relationship between channel busy ratio and the number of vehicles and use it to estimate the total network congestion. We propose a new context-aware transmit power control algorithm which controls the transmission power based on total network congestion. The performance of the proposed algorithm is evaluated using Qualnet, a network simulator. As a result, the estimation of total network congestion is accurately approximated except in specific scenarios, and the packet error rate in vehicle safety communication is reduced through transmit power control.

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Implement of Vehicle Sensor System Using Wireless Communication and Mobile Device (무선통신과 모바일 기기를 이용한 차량용 센서 시스템 구현)

  • Moon, Byung-Hyun;Jin, Yonng-Seok;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2009
  • In this paper, a system which uses Bluetooth and Zigbee wireless communication and mobile device is designed. The temperature within vehicle and the distance betweeen the vehicle and the obstacle is measured by ultrasonic sensor system. The measured data is sent to the mobile PDA and displayed to assist safe driving.

Inter-vehicular Distance Estimation Scheme Based on VLC using Image Sensor and LED Tail Lamps in Moving Situation (후미등의 가시광통신을 이용한 이동상황에서의 영상센서 기반 차량 간 거리 추정 기법)

  • Yun, Soo-Keun;Jeon, Hui-Jin;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.935-941
    • /
    • 2017
  • This paper proposes a method for estimating the distance betweeen vehicles in a moving situation using the image ratio of the distance between the tail lamps of a front vehicle. The actual distance between the tail lamps of a front vehicle was transmitted by LED tail lamps using visible light communication. As the distance between the front vehicle and the rear vehicle changes, it calculates the ratio of the pixel width between the tail lamps of the front vehicle projected on the image. The calculated values are used to derive a distance-mapping function through non-linear regression technique. Then, the distance between vehicles in the moving situation is estimated based on this function.

Hacking attack and vulnerabilities in vehicle and smart key RF communication (차량과 스마트키 RF통신에 대한 해킹 공격 및 취약점에 대한 연구)

  • Kim, Seung-woo;Park, Dea-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1052-1057
    • /
    • 2020
  • With the development of new ICT technology, smart keys for vehicles are terminals with ICT technology. Therefore, when the vehicle and the smart key communicate with RF, a cyber hacking attack is possible. Cyber-attacks on smart keys can pose a threat to vehicle theft and vehicle control. Therefore, it is necessary to study hacking attacks and vulnerabilities of smart keys for autonomous vehicles. In this paper, we analyze the cyber attack case of RF communication for vehicles and smart keys. In addition, a real RF cyber attack on the smart key is performed, and the vulnerability of radio wave replication in the same frequency band is found. In this paper, we analyze the vulnerability of RF communication between vehicles and smart keys, and propose a countermeasure against cyber security. In the future, plans to strengthen cyber attacks and security through the popularization of autonomous vehicles will become basic data to protect human and vehicle safety.

Fast Vehicle Detection based on Haarlike and Vehicle Tracking using SURF Method (Haarlike 기반의 고속 차량 검출과 SURF를 이용한 차량 추적 알고리즘)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.