• Title/Summary/Keyword: Vehicle-to-Vehicle Distance Control

Search Result 278, Processing Time 0.027 seconds

Investigation of the Driving Characteristics of Elderly Drivers (고령운전자의 운전 특성 분석에 관한 연구)

  • Jo, Hyo-Young;Oh, Young-Tae;Lee, Sang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.121-132
    • /
    • 2008
  • Recently, there is a growing interest in promoting safe and convenient roadway and traffic conditions for elderly drivers. This paper analyzed the driving characteristics, self recognition, and any inconvenience of elderly drivers over age 65 through an extensive survey, and drew some action plans to improve the driving conditions for elderly drivers. Survey results showed that the major trip purposes of the elderly driver were found to be commuting(50%) and business(33%), and this pattern was similar to the general drivers. The elderly drivers are interested in "safety", but "brand recognition" was the more important factor for the general drivers in the process of vehicle selection. The elderly drivers had no technical skill difference in driving as compared to the general drivers, but they fully recognized the physical deterioration such as reaction time and sight distance. In addition, the elderly drivers had a tendency to feel psychological contraction as to high workload driving conditions, thus it was necessary to make safe driving conditions by improving the design elements of traffic control devices on the roadways including visibility.

  • PDF

A Range-based Relay Node Selecting Algorithm for Vehicular Ad-hoc Network (차량 애드혹 네트워크를 위한 영역 기반 릴레이 노드 선택 알고리즘)

  • Kim Tae-Hwan;Kim Hie-Cheol;Hong Won-Kee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.88-98
    • /
    • 2006
  • VANET has several different characteristics from MANET such as high mobility of nodes and frequent change of node density and network topology. Due to these characteristics, the network topology based protocol, often used in MANET, can not be applied to VANET. In this paper, we propose an emergency warning message broadcast protocol using range based relay node selecting algorithm which determines the minimal waiting time spent by a given node before rebroadcasting the received warning message. Because the time is randomly calculated based on the distance between sender node and receiver node, a node chosen as a relay node is assured to have a minimal waiting time, even though it is not located at the border of radio transmission range. The proposed emergency warning message broadcast protocol has low network traffic because it does not need to exchange control messages for message broadcasting. In addition, it can reduce End-to-End delay under circumstances of low node density and short transmission range in VANET.

Design and Evaluation of an Early Intelligent Alert Broadcasting Algorithm for VANETs (차량 네트워크를 위한 조기 지능형 경보 방송 알고리즘의 설계 및 평가)

  • Lee, Young-Ha;Kim, Sung-Tae;Kim, Guk-Boh
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The development of applications for vehicular ad hoc networks (VANETs) has very specific and clear goals such as providing intellectual safe transport systems. An emergency warning technic for public safety is one of the applications which requires an intelligent broadcast mechanism to transmit warning messages quickly and efficiently against the time restriction. The broadcast storm problem causing several packet collisions and extra delay has to be considered to design a broadcast protocol for VANETs, when multiple nodes attempt transmission simultaneously at the access control layer. In this paper, we propose an early intelligent alert broadcasting (EI-CAST) algorithm to resolve effectively the broadcast storm problem and meet time-critical requirement. The proposed algorithm uses not only the early alert technic on the basis of time to collision (TTC) but also the intelligent broadcasting technic on the basis of fuzzy logic, and the performance of the proposed algorithm was compared and evaluated through simulation with the existing broadcasting algorithms. It was demonstrated that the proposed algorithm shows a vehicle can receive the alert message before a collision and have no packet collision when the distance of alert region is less than 4 km.

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

Development of Communication Module Based on IEEE 802.11a/g for u-TSN Service (u-TSN서비스를 위한 IEEE 802.11a/g 기반 통신모듈 개발)

  • Bae, Jeong-Kyu;Woo, Ri-Na-Ra;Song, Jung-Hoon;Ahn, Tae-Sik;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.117-124
    • /
    • 2009
  • In this paper, we have developed communication modules for ubiquitous transportation sensor network (u-TSN). The developed module can be used for intelligent transportation services. The developed systems are based on IEEE 802.11a and IEEE 802.11g technologies for vehicle and infrastructure systems, respectively. We have found that the throughput for the developed systems is at maximum around 15 Mbps. It is reduced to 10 Mbps at a long distance and high speed condition. The performance is enough to support traffic control services in dense traffic condition.

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

Test Case Generation for Simulink/Stateflow Model Based on a Modified Rapidly Exploring Random Tree Algorithm (변형된 RRT 알고리즘 기반 Simulink/Stateflow 모델 테스트 케이스 생성)

  • Park, Han Gon;Chung, Ki Hyun;Choi, Kyung Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.653-662
    • /
    • 2016
  • This paper describes a test case generation algorithm for Simulink/Stateflow models based on the Rapidly exploring Random Tree (RRT) algorithm that has been successfully applied to path finding. An important factor influencing the performance of the RRT algorithm is the metric used for calculating the distance between the nodes in the RRT space. Since a test case for a Simulink/Stateflow (SL/SF) model is an input sequence to check a specific condition (called a test target in this paper) at a specific status of the model, it is necessary to drive the model to the status before checking the condition. A status maps to a node of the RRT. It is usually necessary to check various conditions at a specific status. For example, when the specific status represents an SL/SF model state from which multiple transitions are made, we must check multiple conditions to measure the transition coverage. We propose a unique distance calculation metric, based on the observation that the test targets are gathered around some specific status such as an SL/SF state, named key nodes in this paper. The proposed metric increases the probability that an RRT is extended from key nodes by imposing penalties to non-key nodes. A test case generation algorithm utilizing the proposed metric is proposed. Three models of Electrical Control Units (ECUs) embedded in a commercial vehicle are used for the performance evaluation. The performances are evaluated in terms of penalties and compared with those of the algorithm using a typical RRT algorithm.

A Study on the Simulation Modeling Method of LKAS Test Evalution (LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구)

  • Bae, Geon-Hwan;Lee, Seon-bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2020
  • The leading technologies of the ADAS (Advanced Driver Assist System) are ACC (Advanced Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). LKAS is a system that uses cameras and infrared sensors to control steering and return to its running lane in the event of unintentional deviations. The actual test is performed for a safety evaluation and verification of the system. On the other hand, research on the system evaluation method is insufficient when an additional steering angle is applied. In this study, a model using Prescan was developed and simulated for the scenarios proposed in the preceding study. Comparative analyses of the simulation and the actual test were performed. As a result, the modeling validity was verified. A difference between the front wheels and the lane occurred due to the return velocity. The results revealed a maximum error of 0.56 m. The error occurred because the lateral velocity of the car was relatively small. On the other hand, the distance from wheels to the lanes displayed a tendency of approximately 0.5 m. This can be verified reliably.

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.