• Title/Summary/Keyword: Vehicle-to-Vehicle Distance Control

Search Result 278, Processing Time 0.025 seconds

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Conceptual Design on Doorstep Equipments Used for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 스텝 개념설계)

  • Park, Min-Heung;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3882-3888
    • /
    • 2012
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the doorstep equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, two different types of platforms were examined. On closer examination, it seems that the conceptual design is suitable for telescopic sliding type doorstep equipment to minimize damage to the carbody underframe of railway vehicles and can also minimize the variation of the distance between the railway platform. Furthermore, the operation process and control flowchart of doorstep equipments by stages are proposed by various performance requirements.

A Study on the Effects of Diesel Engine Deterioration on Exhaust Gas Emission (대형디젤기관의 열화에 따른 배출가수 특성에 관한 연구)

  • Kim Kiho;Ahn GyunJae;Gang GeumWon;Lee TaeYoung;Eom DongSeop;Lim YunSung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.585-592
    • /
    • 2005
  • Nowadays it has been strongly required to control emissions from vehicles specially in diesel engines because of increasing number of vehicle in korea. This research aims to provide with some of deterioration factors on vehicles for emissions characteristics and the test was done on an electronically controlled heavy-duty diesel engine under severe driving conditions such as 1200 driving hours, 220,000 km driving distance and a full load. Under various driving conditions, CO, HC, $NO_{x}$, PM and Soots emissions were estimated under D-13 mode and D-3 mode respectively. CO emission was not changed until 500 running hours, and as engine aging is progressed THC was not changed until 500 running hours but it decreased to about $33\%,\;NO_{x}$ decreased constantly but on the other hand PM increased up to $6.9\%$ during the aging process.

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

Docking Assessment Algorithm for AUVs with Uncertainties (불확실성이 포함된 무인잠수정의 도킹 평가 알고리즘)

  • Chon, Seung-jae;Sur, Joo-no;Jeong, Seong-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.352-360
    • /
    • 2019
  • This paper proposes a docking assessment algorithm for an autonomous underwater vehicles (AUVs) with sensor uncertainties. The proposed algorithm consists of two assessments, state assessment and probability assessment. The state assessment verifies the reachability by comparing forward distance to the docking station with expected distance to reach same depth as the docking station and necessity for correcting its route by comparing calculated inaccessible areas based on turning radius of the AUV to position of the docking station. When the AUV and the docking station is close enough and the state assessment is satisfied, the probability assessment is conducted by computing success probability of docking based on the direction angle, relative position to the docking station, and sensor uncertainties of the AUV. The final output of the algorithm is decided by comparing the success probability to threshold whether to try docking or to correct its route. To verify the validation of the suggested algorithm, the scenario that the AUV approaches to the docking station is implemented through Matlab simulation.

Real-Time PTZ Camera with Detection and Classification Functionalities (검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라)

  • Park, Jong-Hwa;Ahn, Tae-Ki;Jeon, Ji-Hye;Jo, Byung-Mok;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper we proposed an intelligent PTZ camera system which detects, classifies and tracks moving objects. If a moving object is detected, features are extracted for classification and then realtime tracking follows. We used GMM for detection followed by shadow removal. Legendre moment is used for classification. Without auto focusing, we can control the PTZ camera movement by using center points of the image and object's direction, distance and velocity. To implement the realtime system, we used TI DM6446 Davinci processor. Throughout the experiment, we obtained system's high performance in classification and tracking both at vehicle's normal and high speed motion.

Analysis of an Automotive Fire Case that a Fire Broke out during Driving Immediately after DPF Cleaning (DPF 클리닝 직후에 주행 중 발생한 승용차화재 사례의 분석)

  • Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.556-565
    • /
    • 2016
  • As a result of the enforced control of emission, many devices, including the diesel particulate filter, have been installed in diesel cars to reduce the emission of particulate matters. In this study, a car fire case has been investigated and analyzed. A car fire broke out after the vehicle traveled a distance of 1.4 km from a car service center. The car was provided with DPF cleaning when the DPF warning light came on. After being dismantled in the engine room, the car's engine and gearbox were investigated. The findings showed that the rear part of the DPF metal case was melted and punctured, while the honeycomb filter of the DPF was damaged. The car fire was caused by an overheated DPF associated with inaccurate maintenance practice. Therefore, the responsibility of the fire rested on the car service center that performed the DPF cleaning.

Implementation of AUSV System for Sonar Image Acquisition (소나 영상 촬영을 위한 자율항법 시스템 구현)

  • Ryu, Jae-Hoon;Ryu, Conan KR
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.961-964
    • /
    • 2016
  • This paper describes the implementation of AUSV system for Sonar Image acquisition. The system be controlled by FF-PID algorithm for the thrusters using motion sensor and DGPS. As experimental results, the control performance is that the error distance from the destination positions are under 5m in total survey track of 1km, and the image deviation is under 12 pixel from the manned survey method, which the comparison with the total image quality is almost the same as the manned survey one. Thus the AUSV system is a new method of system can be utilized on the limited survey area as the surveyor should not be able to approach on sea surface.

  • PDF

Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation (비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출)

  • Junyoung Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • The utilization of small unmanned aerial vehicles (UAVs) has expanded into both military and civilian domains, increasing the necessity for research to ensure operational safety and the efficient utilization of airspace. In this study, the calculation of minimum separation distances for the safe operation of small UAVs at low altitudes was conducted. The determination of minimum separation distances requires a comprehensive analysis of the total system errors associated with small UAVs, necessitating sensitivity analysis to identify key factors contributing to flight technology errors. Flight data for small UAVs were acquired by integrating the control system of an actual small UAV with a flight simulation program. Based on this data, operational scenarios for small UAVs were established, and the minimum separation distances for each scenario were calculated. This research contributes to proposing methods for utilizing calculated minimum separation distances as crucial parameters for ensuring the safe operation of small unmanned aerial vehicles in real-world scenarios.

A Study on the Practice of Engineering Education through the Design and Production of Drones for Detecting Objects in Disaster Area (재난 지역의 물체를 탐지하기 위한 소형 무인기 설계와 제작을 통한 공학 교육의 실천에 관한 연구)

  • Kang, Byeong-Ju;Lee, Dae-Hee;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In order to satisfy the graduation requirements, the graduation work should be presented as an engineering dissertation system of the produced work and an outline of the procedure made by the major unit in accordance with the graduation thesis submission rules, and suggests necessary matters for improvement. The design content relates to a small unmanned aerial vehicle configuration for detecting personnel or objects in a disaster area. It is equipped with an infrared sensor and a GPS in the drone, the drone is control by using Blutooth communications. The drones detect the target and use the GPS to determine the location. As a result of the experiment, it was possible to detect the structure object within the range of 3~4 m, confirm the transmission of the position value in real time, and increase the communication distance by using RF communication.