• 제목/요약/키워드: Vehicle verification

검색결과 441건 처리시간 0.026초

차량용 블랙박스 영상파일의 무결성 검증에 해시함수 이용 방법 (Integrity Verification in Vehicle Black Box Video Files with Hashing Method)

  • 최진영;장남수
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.241-249
    • /
    • 2017
  • 최근 차량용 블랙박스의 보급이 확산됨에 따라 이를 법적 증거로 사용하는 경우가 증가하고 있으며, 이에 따라 영상데이터의 무결성 검증에 대한 필요성이 대두되고 있다. 그러나 임베디드 시스템으로 분류되는 블랙박스는 적은 용량과 낮은 처리속도를 가지므로 영상파일 저장과 무결성 검증 처리의 한계점을 가진다. 본 논문에서는 제한된 자원을 가진 블랙박스 환경에서 고속경량 해시함수 LSH와 HMAC의 안전성을 이용하여 영상파일의 무결성을 보장하는 기법을 제안한다. 또한 이 기법을 구현하여 블랙박스 기기에서 무결성 검증 시의 CPU Idle Rate를 측정한 실험 결과를 제시하고, 제안한 기법의 효과성과 실용 가능성에 대해 검증한다.

자동차 가상충돌시험을 위한 고려사항 (Considerations for Virtual Vehicle Crash Test)

  • 김경진;신재호;한경희
    • 자동차안전학회지
    • /
    • 제16권2호
    • /
    • pp.60-66
    • /
    • 2024
  • Computer simulation significantly reduces the high costs associated with actual crash tests and is expanding due to its ability to analyze various test results quantitatively that are difficult to measure in real tests. Research on evaluation technologies is limited according to the finite element analysis, which aims to replace structural verification testing. In this study, considerations for virtual crash tests were derived, and the validity of the zero-energy mode (hourglass mode) was analyzed as part of the considerations for validating the results of vehicle crash simulations. The study reflects on the considerations for virtual crash tests and the variation in hourglass coefficient values affects the occurrence of the hourglass mode. As the hourglass coefficient changes, the maximum hourglass energy reaches over 5% of the maximum internal energy, necessitating a conservative review. A comprehensive study of the maximum hourglass energy is required, considering additional analysis results for various models and collision conditions.

동력분산형 고속철도의 주행성능 해석기술 연구 (Dynamic behavior analysis of the high speed EMC(Electric Multiple Unit))

  • 윤지원;박태원;이문구;전갑진;박성문;김정범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1160-1165
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In this paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper models including air-suspension system, wheel-rail, bogie and car-body will be developed according to the vehicle simulation scenario. International safety standard will be applied for final verification of the system. This research can propose a better solution when test running shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

Development of ISO 26262 based Requirements Analysis and Verification Method for Efficient Development of Vehicle Software

  • Kyoung Lak Choi;Min Joong Kim;Young Min Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.219-230
    • /
    • 2023
  • With the development of autonomous driving technology, as the use of software in vehicles increases, the complexity of the system increases and the difficulty of development increases. Developments that meet ISO 26262 must be carried out to reduce the malfunctions that may occur in vehicles where the system is becoming more complex. ISO 26262 for the functional safety of the vehicle industry proposes to consider functional safety from the design stage to all stages of development. Specifically at the software level, the requirements to be complied with during development and the requirements to be complied with during verification are defined. However, it is not clearly expressed about specific design methods or development methods, and it is necessary to supplement development guidelines. The importance of analysis and verification of requirements is increasing due to the development of technology and the increase of system complexity. The vehicle industry must carry out developments that meet functional safety requirements while carrying out various development activities. We propose a process that reflects the perspective of system engineering to meet the smooth application and developmentrequirements of ISO 26262. In addition, the safety analysis/verification FMEA processforthe safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to autonomous vehicles and the results were confirmed. In addition, the safety analysis/verification FMEA process for the safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to the advanced driver assistance system and the results were confirmed.

전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증 (Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis)

  • 우희채
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

복합 특성 정보와 SVM을 이용한 차량 번호판 추출 및 검증 (Vehicle License Plate Extraction and Verification Using Compounded Feature Information and Support Vector Machines)

  • 김하영;안명석;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.493-496
    • /
    • 2005
  • 본 논문에서는 번호판 고유의 복합 색상 정보와 수직 에지 정보를 이용한 번호판 후보 영역 추출기법을 제안한다. 또한 추출된 번호판 영역의 정확성을 높이기 위해서, Fast DCT를 거쳐 압축된 이미지에 대하여 Support Vector Machines(SVM)을 이용한 검증 과정을 제안한다. 제안하는 기법은 차량번호판 인식의 대상이 되는 자동차의 위치가 정면, 후면을 구분하지 않는 다양함을 가지고, 주변 배경이 충분히 포함되는 상황에서 다양한 크기를 가지는 355장의 영상들을 대상으로 한다. 실험 결과, SVM을 이용한 검증 과정을 거친 방법이 그렇지 않은 경우보다 20%이상 향상된 번호판 추출 성공률을 나타내었다.

  • PDF

타이어와 차량 쏠림 II-이론적 배경, Simulation, 실차검증 (Tire and Vehicle Pull II- Basic Theory, Simulation, and Verification)

  • 이정환;문승환
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.157-164
    • /
    • 2000
  • It is known that residual aligning torque of tires causes vehicle pull. There is, however, only a little literature available which shows how the residual aligning torque of tires causes vehicle pull. In this paper, a vehicle model in two degrees of freedom was adopted for the analysis of a vehicle under the straight-ahead motion. The analysis with this vehicle model clearly shows the effect of residual aligning torque of tires on vehicle pull. In order to show the validity of the analysis, a vehicle commercially available was selected. This vehicle was modeled in 137 degrees of freedom system with multibody dynamics software. Vehicle pull simulation results show that vehicle model drifts in lateral direction due to the residual aligning torque of tires. Vehicle test results with the car were also included.

  • PDF

우주발사체 개발사업에서 신뢰성공학의 시스템엔지니어링 인터페이스 (System Engineering Interfaces of Reliability Engineering in Development of Launch Vehicle)

  • 신명호;조상연;조미옥
    • 시스템엔지니어링학술지
    • /
    • 제2권1호
    • /
    • pp.31-36
    • /
    • 2006
  • Development of launch vehicle needs a large-scale and complicated System Engineering discipline interfacing to small-quantity production with special manufacturing processes. In general, the System Engineering discipline of launch vehicle has its relationship with Production, Operations, Product Assurance and Management disciplines and its internal partitions into the functions of System Engineering Integration & Control, Requirements Engineering, Analysis, Design and Configuration and Verification. As a function of Product Assurance, reliability of launch vehicle plays an significant role in risk management, system safety, flight safety and launch certification through design assurance. Moreover, major functions of systems engineering are integrated by means of reliability in the phases of design and verification. Therefore, derailed identification of system engineering interfaces of reliability, and execution of tasks for reliability assurance is required for successful development of launch vehicle. This paper identifies specific pattern and mechanism of the interfaces between reliability and system engineering.

  • PDF

유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증 (Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft )

  • 김형진;권상은;조영우;김봉규;고은경
    • 항공우주시스템공학회지
    • /
    • 제17권6호
    • /
    • pp.133-143
    • /
    • 2023
  • 본 논문에서는 유무인 협업을 위한 유인회전익기에 의한 다수 무인기 운용통제기술의 요구도 검증을 위한 통합검증환경의 요구도 분석, 구현 및 검증에 대해 기술하였다. 통합검증환경은 유인회전익기 비행 모의, 무인항공기 비행 및 임무장비 모의, 무인항공기 제어 및 유인회전익기와의 통제권 변경을 위한 지상통제장비 모의, 유인회전익기 및 무인항공기 임무계획 작성 및 전송을 위한 운용통제장비 모의로 구성된다. 각각 구현된 구성품들은 소프트웨어/하드웨어 통합시험을 통해 요구도를 검증하였다.

엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증 (Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data)

  • 김용석;장동영
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.