• Title/Summary/Keyword: Vehicle trajectory

Search Result 390, Processing Time 0.021 seconds

퍼지논리제어기를 이용한 차량의 궤적제어 (Vehicle Trajectory Control using Fuzzy Logic Controller)

  • 이승종;조현욱
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

군운용 환경에 적합한 GPS 센서기반 주행궤적 측정 및 분석 기술 (The Driving Trajectory Measurement and Analysis Techniques using Conventional GPS Sensor for the Military Operation Environments)

  • 정일규;류치영;김상영
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.774-780
    • /
    • 2017
  • The techniques for driving trajectory calculation and driving trajectory distribution calculation are proposed to analyze the durability of ground vehicles effectively. To achieve this aim, the driving trajectory of a vehicle and the driving trajectory distribution of that are needed, in addition to road profile. The road profiles can be measured by a profilometer but a driving trajectory of a vehicle cannot be acquired effectively due to a large position error from a conventional GPS sensor. Therefore two techniques are proposed to reduce the position error of a vehicle and achieve the distribution of driving trajectory of that. The driving trajectory calculation technique produces relative positions by using the velocity, time and heading of a vehicle. The driving trajectory distribution calculation technique produces distributions of the driving trajectory by using axis transformation, estimating reference line, dividing sectors and plotting a histogram of the sectors. As a results of this study, we can achieve the considerably accurate driving trajectory and driving trajectory distribution of a vehicle.

차량 궤적 예측기법을 이용한 차간 거리 제어 (Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method)

  • 조상민;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어 (Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method)

  • 조상민;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung;Kim, Suseong;Kim, Yookyung;Cha, Jihun
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1013-1023
    • /
    • 2021
  • In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

차량 궤적 추정을 통한 운행 안전 모니터링 기법 (Method for Maneuver Monitoring with Vehicle Trajectory Reconstruction)

  • 허근섭;이상룡;신진호;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.1065-1071
    • /
    • 2012
  • In this paper, we proposed a method for vehicle monitoring with trajectory reconstruction. For safety, it is important to monitor the driving habit of driver. Every year, many accidents occur due to the reckless driving of the driver. Continuous monitoring of the status of commercial vehicles is needed for safety through the entire path from start point to the destination. To monitor the reckless driving, we try to monitor the trajectory of the vehicle by using vehicle's lateral acceleration data. Compared with steering angle and lateral acceleration, these resemble each other. So, we find the relationship of steering angle and acceleration, and find the global direction of vehicle. We find the position of non-GPS section with EKF (External Kalman Filter) and reconstruct the whole trajectory during vehicle driving.

Vehicle Trajectory-Based Data Forwarding Schemes for Vehicular Ad Hoc Networks

  • Jeong, Jae-Hoon Paul
    • 정보와 통신
    • /
    • 제29권8호
    • /
    • pp.72-84
    • /
    • 2012
  • This paper introduces three vehicle trajectory-based data forwarding schemes, tailored for vehicular ad hoc networks. Nowadays GPS-based navigation systems are popularly used for providing efficient driving paths for drivers. With the driving paths called vehicle trajectories, we can make data forwarding schemes more efficient, considering the micro-scoped mobility of individual vehicles in road networks as well as the macro-scoped mobility of vehicular traffic statistics. This paper shows why the vehicle trajectory is a key ingredient in the design of the vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes over multihop. Through the mathematical formulation, the key design techniques are shown for three forwarding schemes based on vehicle trajectory, compared with a state-of- the- art data forwarding scheme based on only vehicular traffic statistics.

초음파 위치인식 시스템을 이용한 차량의 무인주행 (Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System)

  • 김수용;이정민;이동활;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구 (A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles)

  • 박인희;이창진;정찬호
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.766-769
    • /
    • 2021
  • 딥러닝을 포함한 머신러닝 기법을 기반으로 비행체의 궤적 설계, 제어, 최적화, 예측 등의 작업을 수행하기 위해서는 일정한 양 이상의 비행체 궤적 데이터를 필요로 한다. 그러나 다양한 이유(예를 들어 비행체 궤적 데이터셋 구축에 필요한 비용, 시간, 인력 등)로 일정한 양 이상의 비행체 궤적 데이터를 확보하기 어려운 경우가 존재한다. 이러한 경우 합성 데이터 생성이 머신러닝을 가능하게 하는 방법 중 하나가 될 수 있다. 본 논문에서는 이와 같은 가능성을 탐구하기 위하여 시계열 생성적 적대 신경망을 이용하여 비행체 궤적 합성 데이터를 생성하고 평가하였다. 또한 비행체의 상태를 인식하기 위한 비행체 궤적 예측 작업에서 합성 데이터의 활용 가능성을 탐구하기 위하여 다양한 ablation study(비교 실험)를 수행하였다. 본 논문에서 제시된 생성 평가 및 비교 실험 결과는 비행체 궤적 합성 데이터 생성 및 비행체 궤적 관련 작업에서 합성 데이터의 활용 가능성에 대한 연구를 수행하고자 하는 연구자들에게 실질적인 도움이 될 것으로 예상한다.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.