• Title/Summary/Keyword: Vehicle services

Search Result 530, Processing Time 0.043 seconds

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Performance of Inter Vehicle Communication System for Cooperative Driving Service (협력주행 서비스를 위한 차량통신시스템 성능 분석)

  • Song, Yoo-Seung;Oh, Hyun-Seo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.293-297
    • /
    • 2014
  • ITS services are quickly evolving due to the convergence of ICT technologies. WAVE technology based on IEEE802.11p specification has been introduced for the high speed vehicle communication and applied into the transportation system for driving safety and convenience. Recently, WAVE technology as a inter vehicle communication is used for cooperative driving application. In this paper, the implemented inter vehicle communication system is introduced and suggested as a solution for V2X communication. The performance of the implemented inter vehicle communication system is tested and analyzed under various conditions.

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.

A remark on the tariff system and the billing parameters of B-ISDN services (광대역 ISDN 서비스의 과금체계 및 과금요소 연구)

  • 강국창;이영용;오형식;이덕주;노장래
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.328-332
    • /
    • 1996
  • B-ISDN is expected to be a main vehicle of future telecommunications. There has been a series fo studies on the demand and the market prospect of B-ISDN services. It is true, however, that they lacked some economic reality since the price of services has been overlooked which is a critical economic factor. In this study, we analyze some aspects of the tariff system of B-ISDN services. First, we explore and summarize the billing parameters of B-ISDN services from diverse characteristics of services and ATM network. These parameters are essential if the services are to be charged based on usage. Secondly, we discuss what factors be considered in the design fo B-ISDN services tariff systems from various points of view shch as traffic charactristics, information types and connection types, etc. The results of this study will offer fundamental insights in the design of B-ISDN service pricing scheme and provide reference for efficient services providing.

  • PDF

The Design, Implementation, Demonstration of the Architecture, Service Framework, and Applications for a Connected Car

  • Kook, Joongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.637-657
    • /
    • 2021
  • While the conventional vehicle's Head-Units played relatively simple roles (e.g., control of heating ventilation and air conditioning, the radio reception), they have been evolving into vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid development of ICT technology. The Head-Unit is now successfully extended as an IVI (In Vehicle Infotainment) that can operate various functions on multimedia, navigation, information with regards to vehicle's parts (e.g. air pressure, oil gauge, etc.). In this paper, we propose a platform architecture for IVI devices required to achieve the goal as a connected car. Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving and controlling data from major components of a vehicle, application framework including native and web APIs required to request VSG functionality from outside, and service framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on hardware platforms manufactured for IVI such as Nexcom's VTC1010 and Freescale's i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an real-world finished vehicle. And it was confirmed the vehicle's main components could be controlled using various devices. In addition, by deriving several services for driver assistance and developing them based on CoCaP, this platform is expected to be available in various ways in connected car and ITS environments.

Legal Institutional Considerations of UAV-based Convergence Services : Privacy Protection (UAV기반 융합서비스에 대한 법·제도적 고찰 - Privacy 보호를 중심으로 -)

  • Noh, Jong-ho;Kwon, Hun-yeong
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • UAV (Unmanned Aerial Vehicle) is increasingly used in diverse fields such as disaster, distributi on, and logistics, but it is pointed out that the inadequacy of related laws and invasion of privacy is an obstacle to industrial growth. The regulatory framework for UAV convergence services is pr oposed based on the regulatory framework. From the technical point of view, regulation on archite ctural design, from the market point of view, concurrent operation of services in a limited area, a l egal evaluation based on post-evaluation rather than a pre-regulation under the legislation of visua l information protection law and a social consensus will contribute to the early settlement of UAV -based convergence services.

Real-time RL-based 5G Network Slicing Design and Traffic Model Distribution: Implementation for V2X and eMBB Services

  • WeiJian Zhou;Azharul Islam;KyungHi Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2573-2589
    • /
    • 2023
  • As 5G mobile systems carry multiple services and applications, numerous user, and application types with varying quality of service requirements inside a single physical network infrastructure are the primary problem in constructing 5G networks. Radio Access Network (RAN) slicing is introduced as a way to solve these challenges. This research focuses on optimizing RAN slices within a singular physical cell for vehicle-to-everything (V2X) and enhanced mobile broadband (eMBB) UEs, highlighting the importance of adept resource management and allocation for the evolving landscape of 5G services. We put forth two unique strategies: one being offline network slicing, also referred to as standard network slicing, and the other being Online reinforcement learning (RL) network slicing. Both strategies aim to maximize network efficiency by gathering network model characteristics and augmenting radio resources for eMBB and V2X UEs. When compared to traditional network slicing, RL network slicing shows greater performance in the allocation and utilization of UE resources. These steps are taken to adapt to fluctuating traffic loads using RL strategies, with the ultimate objective of bolstering the efficiency of generic 5G services.

Velocity based Self-Configuring Time Division Broadcasting Protocol for Periodic Messages in Vehicle-to-Vehicle Communication (차량 간 통신에서 주기적 메시지를 위한 속도 기반의 자가 구성형 시분할 브로드캐스팅 방법)

  • Lee, Donggeun;Chang, Sang-Woo;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.169-179
    • /
    • 2014
  • For vehicle safety-related services using wireless communications, reliable collection of various driving informations transmitted periodically by neighbor vehicles is the most important. Every host vehicle analyses them to estimate a potential dangerous situation in a very short time and warns drivers to prevent an accident. However tremendous amount of periodic messages can cause the wireless communication in chaos and the services not in safe. In this paper, we propose a time-division broadcasting protocol to mitigate the communication congestion. It utilizes the received information of vehicle velocity and location, i.e. vehicle traffic density on a road to adjust the number of time slots in a given broadcasting period, and transmission power. The simulation results show that message reception ratio is changed to approximately 40% and channel access time also decreased from 10ms to 0.23ms.

Interior noise of a KTX vehicle in a tunnel (터널주행시의 고속전철의 실내 소음)

  • Choi Sunghoon;Kim Jae-Chul;Lee Chan-Woo;Cho Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.670-674
    • /
    • 2004
  • High-speed trains with the maximum speed of 300 km/h have started revenue services since April 2004. A large portion of the 'Kyung- Bu' line is comprised of tunnels or bridges, which may cause excessive noise in a vehicle. The vibration generated by the trains propagates into the structure of the tunnel and the vehicle and it can be radiated as noise inside the vehicle interior. This noise can usually be heard as low frequency structure-borne noise. Measurement of the noise and vibration inside the KTX vehicle confirmed that the noise comprises of frequencies below 250 Hz with a couple of broad peaks.

  • PDF