• Title/Summary/Keyword: Vehicle safety index

Search Result 106, Processing Time 0.023 seconds

Analysis of Train Delay in Daejeon Metro (대전도시철도의 열차 지연운행 분석연구)

  • Kwon, Young-Seok;Lee, Jin-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • This study investigated the causes and problems of train operation impediments through the statistics analysis of 8 years'internal data of Daejeon Metropolitan Express Transit. By evaluating the risks regarding the system, equipment, and parts of high risk group, this study measured the Risk Index Severity, and applied the $5{\times}5$ Risk Assessment Matrix which is a method of risk management to calculate the scale of risk to analyze the safety level and allowance range. As a result, the car sector, the most serious risk, followed by machinery and equipment sector showed that the inherent risk. In particular, the door broken and the door rail signaling and control devices due to defects of the vehicle is high, but also the severity, and frequency are showing very frequent additional potential accidents. PSD also had defects in the machinery sector appeared to be the most dangerous of the PSD poor safety gates, it was found that the glass also involve the risk of mishandling and breakage of the PSD. This study intended to contribute to the transportation benefits through the safety and stable operation of Metropolitan Express Transit.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

Utilization of Unmanned Aerial Vehicle(UAV) Image for Detection of Algal Bloom in Nakdong River (무인항공영상을 활용한 낙동강 녹조 탐지)

  • Kim, Heung-Min;Jang, Seon-Woong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.457-464
    • /
    • 2017
  • The large breeding of algae in rivers has caused the algal bloom and has becoming a serious national problem for the safety of water sources. Therefore, in order to supply stable water resources through securing clean water, it is necessary to develop technology for prevention of water pollution caused by algal bloom. The purpose of this study is to improve the water quality management ability of river by applying the algal bloom detection technique using UAV. Unmanned aerial images were acquired for the Dodong in the middle region of the Nakdong River where algal bloom are frequent. In addition, the phytoplankton concentration was acquired through the sampling of algal bloom and the examination of water quality. Correlation between phytoplankton concentrations and the results of applying the algal bloom index to the Unmanned aerial images showed a strong positive correlation. The remote sensing method suggested in this study is expected to improve the initial response capability of river water pollution.

The Effects of Horizontal Curves on Vehicle Speeds and Accidents (평면곡선부의 속도 및 교통사고 영향분석연구)

  • 이점호;이동민;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2000
  • The Purpose of this Paper was to study the relationship between the change of operating speeds and the accidents on horizontal curves. For this purpose, we divided a horizontal curve section into two parts, a tangent section and a curve section, to estimate the operating speed for each vehicle. For studying relationship between the change of speed and geometric effect, the free-flow speed was used. The location and speed for the lowest speed were studied. Also, we analyzed the relationship between the change of operating speeds and the accidents. The followings are resulted in this study. First, drivers tend to reduce speeds significantly before they reach a curve. And the lowest speed was recorded at the downstream of the Point of curve (PC) due to the limited sight-distance of drivers on curve. Second, the larger the change of operating speeds become, the greater frequency of accident was recorded. These results can be used for developing the safety index on highways to check the design consistency.

  • PDF

Development of In-tank Pressure Regulator and Solenoid Valve (내장형 레귤레이터 및 솔레노이드 개발)

  • Lee, Jun-Hyuk;Lim, Tae-Hoo;Kim, Kyung-Nam;Shim, Sang-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.188-191
    • /
    • 2007
  • This paper shows the Development of In-tank pressure regulator and Solenoid Valve used in FCV(Fuel Cell Vehicle). We have developed new type of Regulator and Solenoid through analysis of the structure and characteristics of component of FCS(Fuel Cell System) from the advanced technology. Now it is possible to localize the component by making use of the development of Regulator and Solenoid made by us. Regulator and Solenoid is a equipment to control hydrogen pressure supplied into a stack. Therefore, outlet pressure, a flow of fluid and temperature are important parameters according to a inlet pressure. And leak test, endurance test and burst test should be done to guarantee the performance and safety of Regulator and Solenoid used in the fuel of high pressure. Also, Hydrogen friendly materials are applied to inner parts of the Regulator, Solenoid and weight reduction is done to cost saving in part not related to performance. As a result, we have proven the good performance and reliability in endurance of Regulator, Solenoid and will make an development in performance as well as durability to ensure industrialization.

  • PDF

Development of Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot

  • Kim, Seon Chil;Kim, Sun Jung;Choi, Kyongon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.407-422
    • /
    • 2014
  • Objective: The purpose of the study is to develop quantitative usability evaluation criteria for senior-friendly autonomous transportation robot. Background: The Republic of Korea has become the most rapidly aging society, and is anticipated to enter the post-aged society in 2026. To raise the quality of life of a senior with limited mobility and to reduce the burden of caregivers, many high-tech assistive products with information technologies are developed nowadays. The senior-friendly autonomous transportation robot is one person robot vehicle to move a senior to the destination for hospitals, nursing homes or silver town complex. With built-in navigation system and environmental monitoring censors, it automatically seeks the path to the destination and avoids collision to obstacles and pedestrians on the way. Due to the early stage of the product, few usability studies in this field have been done, mostly on general service robots to assist seniors, power wheelchairs and delivery robots. ISO and KS standards for the service robots are focused on safety. Method: Based on the reference usability index, the early draft of the usability evaluation questionnaires was developed. After small group tests and interviews, the experts modified the initial draft to the Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot (UEC-SFATR). Result: UEC-SFATR consisted of 4 subscales - Safety, Controllability, Efficiency and Satisfaction. All of the 4 subscales of UEC-SFATR were passed the reliability criteria by 4 groups of seniors, divided by gender and familiarity of smart-devices. Conclusion: UEC-SFATR covers wider area of user experiences of the SFATR and is a good measurement tool to help both the users and developers of the robot. Application: This study provides guide to the future product development and product competitiveness evaluation by quantifying user experiences for the SFATR.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

A Study of Opposing Left-Turn Conflict Severity at Signalized Intersections (신호교차로 대향좌회전 상충심각도 구분에 관한 연구)

  • Kim, Eung-Cheol;Park, Jee-Hyung;Oh, Ju-Taek;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2007
  • In 2004, the number of traffic crashes and deaths in Korea are 220,755 and 6,563, respectively. Korea Road Traffic Safety Authority reported that the number of traffic accidents occupies over 25% out of total accidents, and found that traffic crash probability is extremely high at intersections since intersections have various traffic conflict points. A Safety study using Traffic Conflict Technique is much more useful than a study using reported traffic accident data. Existing traffic conflict research hardly considered conflict severity occurring at intersections. So, the study developed new criteria considering conflict severity. Analytic methods precisely detecting crashing points using field surveying data, and applied an application of our new criteria. Opposing left-turn conflict criteria was devided by three groups(high severe conflict, middle severe conflict, and less severe conflict) based on conflict boundary by means of a standard vehicle length. After analyzing field surveying data(3hours), we found totally 41 opposing left-turn conflicts. 3 cases are high severe conflict, and another 10 cases are middle severe conflicts, and the other cases are less severe. Studies related in conflict severity are considerably important to evaluate intersection's detailed safety index, and existing studies(purely conflict counting does not consider severity) have a limitation to clearly determine the level of safety of intersections for an application.

  • PDF

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.