• Title/Summary/Keyword: Vehicle parts

Search Result 873, Processing Time 0.024 seconds

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario (어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘)

  • Lee, Hanseul;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.158-164
    • /
    • 2015
  • Lane detection is one of the key parts among autonomous vehicle technologies because lane keeping and path planning are based on lane detection. Camera is used for lane detection but there are severe limitations such as narrow field of view and effect of illumination. On the other hands, Lidar sensor has the merits of having large field of view and being little influenced by illumination because it uses intensity information. Existing researches that use methods such as Hough transform, histogram hardly handle multiple lanes in the co-occuring situation of lanes and road marking. In this paper, we propose a method based on RANSAC and regularization which provides a stable and precise detection result in the co-occuring situation of lanes and road marking in highway scenarios. This is performed by precise lane point extraction using circular model RANSAC and regularization aided least square fitting. Through quantitative evaluation, we verify that the proposed algorithm is capable of multi lane detection with high accuracy in real-time on our own acquired road data.

Property Prediction of Rupture Disc by Using Finite Element Analysis (유한요소해석을 이용한 파열판의 특성 예측)

  • Han, Chang-Yong;Lee, Seong-Beom;Jung, Hee-Suk;Kim, Tae-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • High pressure devices are used widely. Interest in rupture disc to people is the increases in protect of facilities and people. A rupture disc consists of mainly three parts: holder, plate and vacuum support. Rupture discs are rusted or destroyed by diverse environments. Rupture discs are made from STS 316L stainless steel because of its high corrosion resistance and yield strength. In this study, modeling of a rupture disc by CATIA V5 and finite element analysis by ANSYS were carried out. The finite element analysis results executed to predict properties of the rupture disc with thickness and height.

  • PDF

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.

Study on the Mechanical Face Seal Performance for a 7-ton-Class Turbopump (7톤급 터보펌프 기계평면실의 성능 시험 연구)

  • Bae, Joonhwan;Kwak, Hyun D.;Choi, Changho
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.154-159
    • /
    • 2016
  • This paper presents an experimental study of the leakage performance and endurance performance of a mechanical face seal in the 7-ton-class turbopump of the Korea Space Launch Vehicle 2 third-stage engine. We install a mechanical face seal between the fuel pump and turbine to prevent the mixing of the fuel and turbine gas. We design and manufacture a prototype mechanical face seal, which has two parts, namely, a bellows seal assembly and mating ring. We set up a test facility to measure the leakage and endurance of the mechanical face seal. For the similarity tests, we use water under real operating conditions such as high rotational speed, high temperature, and high pressure. Through investigation of the leakage and carbon wear rate, it is possible to evaluate the performance of the mechanical face seal. The results of the leakage and endurance performance test demonstrate the absence of any leakage from the prototype mechanical face seal after a trial run and clarify that the acceptable wear rate fully satisfies the turbopump requirements. Finally, we install a qualified mechanical face seal in a 7-ton-class turbopump and perform a validation test in the turbopump real-propellant test facility in the Korea Aerospace Research Institute. The test results confirm that the mechanical face seal works well under real operating conditions.

Dynamic Characteristics of Plastic Materials for Automobile Cockpit Module (자동차 칵핏 모듈용 플라스틱 소재의 열화 동특성 평가)

  • Woo, Chang Su;Park, Hyun Sung;Jo, Jin Ho;Kim, Ji Hoon;Choi, Ju Ho;Kim, Yeoung Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1585-1590
    • /
    • 2012
  • Engineering plastics are used in instrument panels, interior trim, and other vehicle applications, and the thermomechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the temperature effects. Viscoelastic properties such as the glass transition temperature and storage modulus and loss factor under temperature and frequency sweeps were measured. The data were compared with the original ones before aging to analyze the behavior changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

Distortion Analysis for Outer Ring of Automotive Wheel Bearing (자동차용 휠 베어링 외륜의 변형 해석)

  • Lee, Seung Pyo;Kim, Bong Chul;Lee, In Ha;Cho, Young Geol;Kim, Yong Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1613-1618
    • /
    • 2012
  • The wheel bearing is one of the important parts in a vehicle for translating power and bearing weight. When it is mounted on the knuckle by using bolts, the distortion of the outer ring including the seal mounting point and raceway occurs. In this study, a numerical analysis was performed to analyze the distortion of the outer ring by using a finite element method. The commercial software MSC.MARC was used for this purpose. Elastoplastic and contact analysis were carried out to compute the clamping behavior of the outer ring, bolts, and knuckle. Because the concavity on the flange of the outer ring affects the deformation, its effect was considered. To verify the reliability of this study, the roundness of the outer ring was measured. The experimental results were comparatively in agreement with the computational results.

Material Properties for Reliability Improvement in the FEA Results for Rubber Parts (고무 제품 유한요소해석 결과의 신뢰 향상을 위한 물성치 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1521-1528
    • /
    • 2011
  • We studied the material properties for reliability improvement in finite element analysis results for a nitrile butadiene rubber hub-bearing seal and for a carbon-filled rubber mount used in a vehicle. It was difficult to measure the material properties of hundreds of types of rubber for the mount design. Thus, we suggested that the engineering stressstrain relations from pure shear test data could be synthesized by using simple tension data and Poisson's ratio. We defined Poisson's ratio by using a function of principal stretches to synthesize the stress-strain relations for a pure shear test. A transformation of the pure shear data was applied to the experimental values to obtain the predicted results when the strain approaches 100%. In the finite element analysis for the contact force of a hub-bearing seal, the strain results that used the transformation of the pure shear data and simple tension data almost corresponded to the experimental values. Ogden constants were used to analyze.

Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads (비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가)

  • Kim, Tae Young;Kim, Tae An;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.567-573
    • /
    • 2017
  • The drive shaft of passenger vehicle has an important role in transmitting the torque between the power train system and the wheels. Torsional fatigue failures occur generally in the connection parts of the spline edge of the drive shaft, when there is significant fatigue damage under repeated twisting loads. A heat treatment, an induction hardening process, has been adopted to increase the torsional strength as well as the fatigue life of the drive shaft. However, it is still unclear how the extension of the induction hardening process in a used material relates to its shear-strain fatigue life range. In this study, a shear-strain controlled torsional-fatigue test with a specially designed specimen was conducted by an electro-dynamic torsional fatigue test machine. A finite element analysis of the drive shaft was carried out using the results obtained by the fatigue experiment. The estimated fatigue life was verified through a twisting load test of the real drive shaft in a test rig.