• Title/Summary/Keyword: Vehicle parts

Search Result 869, Processing Time 0.03 seconds

The Theoretical Life Prediction of Battery Disconnecting System for Electric Vehicle (전기자동차 베터리 차단장치의 이론적 수명 예측에 대한 연구)

  • Ryu, Haeng-Soo;Park, Hong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.864-865
    • /
    • 2011
  • Battery Disconnecting System (BDS) is the important equipment in electric vehicle system. Therefore, most of electric vehicle companies, i.e. Hyundai Motors, Renault Motors, General Motors, want to have the reliability of 15 years - 150, 000 miles. Recently, reliability prediction through Siemens Norm SN 29500 is considered without testing. In this paper, we will introduce the standard and various input parameters. Also the case study will be shown for BDS. Prediction model is constructed by listing all the components of BDS. It calculates the $\pi$ factors for each components using the conversion equation in the standard and converts the reference failure rates to the expected operating failure rates. According to the result, the parts which will be improved are EV-Relays.

  • PDF

Steering Model for Vehicle Dynamic Analysis (차량 동력학 해석을 위한 조향장치 모델링)

  • Tak, Tae-Oh;Kim, Kum-Cheol;Yoon, Jung-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.214-221
    • /
    • 1999
  • In this research, a power-assisted steering system is modeled as a part of a full vehicle dynamic model. The dynamic model of the steering system incorporates hydraulic and dynamic relations between major parts of a steering system, such as steering column, control valve, rack and pinion gear. Through an experimental setup of the steering system, the steering system model is validated. The steering model is included in a full vehicle dynamic model of a car, where kinematic relations between steering and suspension system are defined, and various simulations are performed to evaluate the performance of steering system in conjunction with overall dynamic performance of the vehicle.

  • PDF

The Design of a Snow Plow for the Special Equipment Vehicle (특장차용 제설기의 설계)

  • Park, Chan-Il;Kim, Dae-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.801-806
    • /
    • 2000
  • This study deals with the design of snow plow for the special equipment vehicle. The purpose of the study is to develop the snow plow that can install in the special equipment vehicle such as clean up vehicle or dump truck in winter season. To do so, it is designed by 3 sub-assembly - snow shovel, main frame, and hydraulic cylinder and its support. The snow shovel consists of 3 pieces to meet the road profile and to exchange easily the damaged parts. Main frame connects the snow shovel with the hydraulic cylinder and its support and supports the weight of snow. Finally, the hydraulic cylinder and its support move the snow shovel up and down and tilt it. We designed it using 3D commercial CAD software for concurrent engineering design.

  • PDF

The Development of Gradient Response CVT for a Small Size Electric Vehicle (소형 전기차량용 구배반응 무단변속기 개발)

  • Kim, Gyu-Sung;Kwon, Young-Woong
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.33-38
    • /
    • 2015
  • In this study new CVT(Continuously Variable Transmission) system which is adaptable to a small size electric vehicle is proposed available to gradient response CVT. New pulleys consist of springs adapted driving pulley and driven pulley. At the moment a small electric vehicle drive a slope, new system respond to a gradient as overcoming tensional force of springs. We made prototype of gradient response CVT to test parts performance and travelling performance test. As a result of test, belt pitch diameter varied for high torque direction at the gradient. In the flat travelling, acceleration travelling and gradient travelling performance test, the small electric vehicle with gradient response CVT get improved perfomance than the small electric vehicle with reduction gear.

Vehicle Detection Using Edge Analysis and AdaBoost Algorithm (에지 분석과 에이다부스트 알고리즘을 이용한 차량검출)

  • Song, Gwang-Yul;Lee, Ki-Yong;Lee, Joon-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • This paper proposes an algorithm capable of detecting vehicles in front or in rear using a monocular camera installed in a vehicle. The vehicle detection has been regarded as an important part of intelligent vehicle technologies. The proposed algorithm is mainly composed of two parts: 1)hypothesis generation of vehicles, and 2)hypothesis verification. The hypotheses of vehicles are generated by the analysis of vertical and horizontal edges and the detection of symmetry axis. The hypothesis verification, which determines vehicles among hypotheses, is done by the AdaBoost algorithm. The proposed algorithm is proven to be effective through experiments performed on various images captured on the roads.

Design Study for KSLV Integrated Power Plant Test Facility

  • Kang, Sun-Il;Lee, Jung-Ho;Kim, Young-Han;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.573-576
    • /
    • 2004
  • KARI is achieving the KSLV program according to National Space Technology Development Program. In this paper, the authors are intended to introduce the Integrated Power Plant (abb. IPP) test facility which will be constructed for the variety of tests on KSLV program. IPP test facility refers to comprehensive testing equipment for liquid rocket launch vehicle. Using this facility, KARl can verify the adaptiveness of parts and subsystems for launch vehicle and finally can qualify the system characteristics of launch vehicle doing kinds of test including hot firing test. Using this facility, KARI can simulate the vehicle launching circumstances and it make to predict the performance of launch vehicle when its flight test.

  • PDF

Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique (최적화 기법을 이용한 한국형 소형전술차량의 경량설계)

  • Suh, Kwonhee;Song, Bugeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

Development and Application of the Spare-parts Cost Estimating Relationships (수리부속비 비용추정식 개발과 활용방안)

  • Ryu, Min-Kyu;Lee, Yong-Bok;Kang, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.601-611
    • /
    • 2010
  • Currently, a life cycle cost estimates(LCCE) is the most important factor in weapon system acquisition process. However, operation and maintenance(O&M) cost related studies are insufficient from the previous literature survey. O&M cost consists of various cost factors such a man power, maintenance and direct & indirect support costs. We have known that spare-parts cost is a key factor in the O&M cost. In this paper, we developed the spare-parts cost estimating relationships(CERs) of fixed-wing aircraft and armored vehicle weapon systems which include 4 historical cost drivers ; system acquisition cost, deterioration rate, localization rate, mission characteristic. Furthermore, we proposed the application methodologies that O&M cost estimating, total life cycle cost estimating and determination of the economic life using the spare-parts CERs.