• Title/Summary/Keyword: Vehicle fuel supply

Search Result 137, Processing Time 0.025 seconds

Design of Multi Step Fuel Pump Controller for Vehicle's Fuel Retrenchment (자동차 연료 절감을 위한 연료펌프 다단 제어기 설계)

  • Yang, Jae-Won;Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.307-308
    • /
    • 2007
  • At present, there are unnecessary electrical consumes and a lot of fuel-losses by the vaporized gas due to the rising of fuel temperature because the fuel pump of the fuel supply system rotates regularly regardless to the driving condition. In this paper, we designed the multi-step controller for controlling fuel pump to supply fuel according to RPM of each moment by measuring the real time RPM of the engine at ECU of the vehicle. Also, it can judge the existence or nonexistence of disorder by measuring the pressure of the fuel supply line, in case of abnormal state, it can supply the fuel intelligently by changing the mode to self-compensation mode.

  • PDF

Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine (자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험)

  • Son, In-Soo;Hur, Sang-Bum;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

A Case Study on Fuel Supply and Cooling Systems of High-Speed Vehicles (고속 비행체 연료공급 및 냉각계통 사례분석)

  • Choi, Seyoung;Park, Sooyong;Choi, Hyunkyung;Jun, Pilsun;Park, Jeongbae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In high-speed vehicle, selection of fuel, configuration of components and cooling system are required to solve the heating issue by aerodynamic heating and inner combustion process. This subsystem consists of fuel tank, supply pump, various control valve, heat exchanger, including reactor, connecting line, adiabatic structures and insulations. In this paper, applicable fuel property is considered at flight characteristic of hypersonic vehicles. In this regard, current state of fuel/cooling system technology is identified.

Development of Fuel Economy Measurement Method for Hydrogen Fuel Cell Vehicles (수소연료전지자동차 연료소비율 측정방법에 대한 연구)

  • Lim, Jong-Soon;Choi, Young-Tae;Yong, Gee-Joong;Kwon, Hae-Boung;Lee, Hyun-Woo;Maeng, Jeong-Yoel
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.636-639
    • /
    • 2009
  • Fuel consumption measurement of Hydrogen fuel cell vehicle is considerably different form internal combustion engine vehicle such as carbon balance method. A practical method of fuel Consumption measurement has been developed for Hydrogen fuel cell vehicles. There are three method of hydrogen fuel consumption testing, gravimetric, PVT(Pressure, Volume and temperature), and Coriolis mass flow, all of which necessitate physical measurements of the fuel supply. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles on chassis-dynamometer and to give information when the research is intended to develop method to measure hydrogen fuel consumption.

  • PDF

An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space (반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Analysis on Flow Control Method for Simultaneous Fuel Filling of the Korea Space Launch Vehicle-II (한국형발사체 연료 동시충전을 위한 유량제어 방식에 대한 고찰)

  • Yeo, Inseok;Lee, Jaejun;An, Jaechel;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.5-13
    • /
    • 2017
  • To lunch the Korea Space Launch Vehicle-II(KSLV-II), the second launch complex will be constructed on the Naro Space Center and Kerosene Filling System (KFS) will be also installed newly. KFS of KSLV-II launch complex system is being designed based on Naro Launch Complex. But this must supply fuel to fuel tanks of the vehicle with only a supply pump because KSLV-II is a 3-stage launch vehicle unlike Naro Launch Vehicle or Test Launch Vehicle (TLV). A sudden rise of pump output pressure is recognized during fuel filling scenario selection process. This occurs because return flow can not actively deal with a lot of flow change using flow control method of orifice type. To solve this problem, it is verified that fuel can be stably supplied by installation of accumulator and an appropriate adjustment of filling mode change sequence through flow analysis of various cases.

  • PDF

Analysis on Flow Control Method for Simultaneous Fuel Filling of the Korea Space Launch Vehicle-II (한국형발사체 연료 동시충전을 위한 유량제어 방식에 대한 고찰)

  • Yeo, Inseok;Lee, Jaejun;An, Jaechel;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.132-140
    • /
    • 2018
  • To lunch the Korea Space Launch Vehicle-II(KSLV-II), a second launch complex will be built at the Naro Space Center, and a Kerosene Filling System (KFS) will be installed. KFS of KSLV-II launch complex system is being designed based on Naro Launch Complex. But this must supply fuel to fuel tanks of the vehicle with only a supply pump because KSLV-II is a 3-stage launch vehicle unlike Naro Launch Vehicle or Test Launch Vehicle (TLV). A sudden rise of pump output pressure is recognized during fuel filling scenario selection process. This occurs because return flow can not actively deal with much flow change using the orifice-type flow-control method. To solve this problem, it is verified that fuel can be stably supplied by installing an accumulator, designed for appropriate adjustment of filling-mode change sequence via flow analysis of various cases.