• 제목/요약/키워드: Vehicle fuel economy

Search Result 306, Processing Time 0.022 seconds

A study on press plasticity of A3003-O aluminum material (A3003-O 알루미늄 소재의 프레스 성형성에 대한 연구)

  • Kim, Hyeok-Jin;Han, Seong-Ryeol;Kim, Kyung-A
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2019
  • People's interest in the environmental problems of the Earth is growing as they come to the modern world, and research is being actively conducted on how to protect the environment. As a result, the automobile industry, one of the causes of environmental pollution, is also affected. Therefore, research is being conducted to improve the fuel economy and light weight of cars, development of pollution-free cars such as electric cars, and aluminium materials that are lighter than ordinary steel sheets and easier to recycle are gaining attention. In this experiment, the material was formed to form a form of aluminium and the material reduction rate of the side wall of the foam was tested according to the amount of side wall. The material used in the experiment was A3003-O, which is less plastic than normal steel plates, but has excellent corrosion resistance, plasticity and weldability compared to aluminium materials, but has poor tensile strength. For tensile testing, a certain array of Forming Shapes was molded and the height of the Forming was set to 5mm, and the height of the Forming was 4.7mm, indicating that the difference between the first 5mm Forming and the height was not large. In addition, the material reduction rate was tested by giving 15, 0, and -0.15 teas, respectively, and was found to be valuable as a product only for -0.15.

Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function (근사함수를 이용한 스틸휠의 디스크 홀의 최적화)

  • 임오강;유완석;김우현;조재승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • Wheel for passenger car support the car weight with tires, and they transmit rolling and braking power into the ground. Whittling away at wheel weight is more effective to boost fuel economy than lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model, and ANSYS package is selected for analyzing the design model. It has difficulties to interface these commercial software directly. For Combining both programs, response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim, and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel whee. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm, which used the second-order information in the direction finding problem and uses the active set strategy, is used for solving optimization problems.

Light-Weight Design of Automotive Knuckle by Using CAE (Computer Aided Engineering) (CAE 해석을 이용한 자동차용 AA6061 Knuckle의 경량화 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.663-668
    • /
    • 2016
  • Increasing fuel economy and reducing air pollution have been unavoidable issues in the development of new cars, and one of the important methods is decreasing vehicle weight. Weight can be reduced by using lightweight materials such as aluminum alloy. Dynamic stiffness analysis was performed and compared for different materials for the knuckle for a car. The dynamic stiffness of 6061 aluminum alloy was about 30% higher than that of FCD600 cast iron. Usually, materials that have high dynamic stiffness show excellent vibration resistance because the dynamic stiffness can affect the vibration characteristics. In order to design a lighter and more reliable chassis component using 6061 aluminum alloy (AA6061-T6), a new knuckle shape is suggested by adding section ribs to an existing knuckle model. The effect of each design change on the reliability and component weight was investigated using computer aided engineering (CAE).

Design of Excess Flow Device for Automotive Cylinder Valve Based on Finite Element Analysis (유한요소 해석을 이용한 자동차 압력 용기 밸브용 과류 방지 장치의 설계)

  • Lee, Hyo-Ryeol;Kwon, Dae-Hwan;Shin, Jin-Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.19-29
    • /
    • 2021
  • Due to the climate changing, the world's countries are tightening regulations on CO2 and air pollutants emission to solve them. In addition, eco friendly vehicles is increasing to replace automobiles in internal combustion engine. Recently, the government is supporting the expansion of hydrogen refueling infrastructure and localization of core equipment in refueling facilities according to the hydrogen economy road map. In this study, design of the Excess flow limiting device in FCEV cylinder valve using by finite element analysis and performed performance tests on prototype. Major test results as hydrostatic strength, continued operation, operation, pressure impulse, leakage showed that the excess flow limiting device meets the performance requirements according to ISO 12619-2 and ISO 12619-11.

The Dynamics of Noise and Vibration Engineering Vibrant as ever, for years to come

  • Leuridan, Jan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.47-47
    • /
    • 2010
  • Over the past 20 years, constant progress in noise and vibration (NVH) engineering has enabled to constantly advance quality and comfort of operation and use of really any products - from automobiles to aircraft, to all kinds of industrial vehicles and machines - to the extend that for many products, supreme NVH performance has becomes part of its brand image in the market. At the same time, the product innovation agenda in the automotive, aircraft and really many other industries, has been extended very much in recent years by meeting ever more strict environmental regulations. Like in the automotive industry, the drive towards meeting emission and CO2 targets leads to very much accelerated adoption of new powertrain concepts (downsizing of ICE, hybrid-electrical...), and to new vehicle architectures and the application of new materials to reduce weight, which bring new challenges for not only maintaining but further improving NVH performance. This drives for innovation in NVH engineering, so as to succeed in meeting a product brand performance for NVH, while as the same time satisfying eco-constraints. Product innovation has also become increasingly dependent on the adoption of electronics and software, which drives for new solutions for NVH engineering that can be applied for NVH performance optimization of mechatronic products. Finally, relentless pressure to shorten time to market while maintaining overall product quality and reliability, mandates that the practice and solutions for NVH engineering can be optimally applied in all phases of product development. The presentation will first review the afore trends for product and process innovation, and discuss the challenges they represent for NVH engineering. Next, the presentation discusses new solutions for NVH engineering of products, so as to meet target brand values, while at the same time meeting ever more strict eco constraints, and this within a context of increasing adoption of electronics and controls to drive product innovation. NVH being very much defined by system level performance, these solutions implement the approach of "Model Based System Engineering" to increase the impact of system level analysis for NVH in all phases of product development: - At the Concept Phase, to be able to do business case analysis of new product concepts; to arrive at an optimized and robust product architecture (e.g. to hybrid powertrain lay-out, to optimize fuel economy); to enable target cascading, to subsystem and component level. - In Development Phase, to increase realism and productivity of simulation, so as to frontload virtual validation of components and subsystems and to further reduce reliance on physical testing. - During the final System Testing Phase, to enable subsystem testing by a combination of physical testing and simulation: using simulation models to simulate the final integration context when testing a subsystem, enabling to frontload subsystem testing before final system integration is possible. - To interconnect Mechanical, Electronical and Controls engineering, in all phases of development, by supporting model driven controls engineering (MIL, SIL, HIL). Finally, the presentation reviews examples of how LMS is implementing such new applications for NVH engineering with lead customers in Europe, Asia and US, with demonstrated benefits both in terms of shortening development cycles, and/or enabling a simulation based approach to reduce reliance on physical testing.

  • PDF

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.