• 제목/요약/키워드: Vehicle fish-eye lens

검색결과 5건 처리시간 0.021초

차량용 어안렌즈영상의 기하학적 왜곡 보정 (Geometric Correction of Vehicle Fish-eye Lens Images)

  • 김성희;조영주;손진우;이중렬;김명희
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.601-605
    • /
    • 2009
  • $180^{\circ}$ 이상의 영역을 획득하는 어안렌즈(fish-eye lens)는 최소의 카메라로 최대 시야각을 확보할 수 있는 장점으로 인해 차량 장착 시도가 늘고 있다. 운전자에게 현실감 있는 영상을 제공하고 센서로 이용하기 위해서는 캘리브레이션을 통해 방사왜곡(radial distortion)에 따른 기하학적인 왜곡 보정이 필요하다. 그런데 차량용 어안렌즈의 경우, 대각선 어안렌즈로 일반 원상 어안렌즈로 촬영한 둥근 화상의 바깥둘레에 내접하는 부분을 잘라낸 직사각형 영상과 같으며, 수직, 수평 화각에 따라 왜곡이 비대칭구조로 설계되었다. 본 논문에서는, 영상의 특징점(feature points)을 이용하여 차량용 어안렌즈에 적합한 카메라 모델 및 캘리브레이션 기법을 소개한다. 캘리브레이션한 결과, 제안한 방법은 화각이 다른 차량용 어안렌즈에도 적용 가능하다.

  • PDF

비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법 (Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens)

  • 조영주;김성희;박지영;손진우;이중렬;김명희
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.23-31
    • /
    • 2010
  • 180도 이상의 영역을 획득하는 어안렌즈(fisheye lens)는 최소의 카메라로 최대 시야각을 확보할 수 있는 장점으로 인해 차량 장착 시도가 늘고 있다. 이와 같이 어안렌즈를 통해 시야를 확보하고, 영상센서로 사용하기 위해서는 캘리브레이션 작업이 선행되어야 하며, 운전자에게 현실감 있는 영상을 제공하기 위해서는 이를 이용하여 방사왜곡(radial distortion)에 따른 기하학적인 왜곡 보정이 필요하다. 본 논문에서는 비대칭 왜곡을 가진 180도 이상 화각의 차량용 대각선 어안렌즈를 위해 영상 손실을 최소화하는 왜곡 보정 기법을 제안한다. 왜곡 보정은 왜곡 모델이 포함된 카메라 모델을 설정하고 캘리브레이션 과정을 통해 카메라 파라미터를 구한 후 왜곡이 보정된 뷰를 생성하는 과정으로 이루어진다. 먼저 왜곡모델로서 비선형의 왜곡 형상을 모방한 FOV(Field of View)모델을 사용한다. 또한 비대칭 왜곡렌즈의 경우 운전자의 좌우 시야각 확보에 중점을 두어 수직 화각보다 수평 화각이 크게 설계되었기 때문에 영상의 장축, 단축의 비율을 일치시킨 후 비선형 최적화 알고리즘을 사용하여 카메라 파라미터를 추정한다. 최종적으로 왜곡이 보정된 뷰 생성 시 역방향 사상과 함께 수평, 수직 방향에 대한 왜곡 보정 정도를 제어 가능하도록 함으로써 화각이 180도 이상인 영상에 대해서 핀홀 카메라 모델을 적용하여 2차원 평면으로 영상을 보정하는 경우 발생하는 영상 손실을 최소화하고 시각적 인지도를 높일 수 있도록 하였다.

Creation of 3D Maps for Satellite Communications to Support Ambulatory Rescue Operations

  • Nakajima, Isao;Nawaz, Muhammad Naeem;Juzoji, Hiroshi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • 제6권1호
    • /
    • pp.23-30
    • /
    • 2019
  • A communications profile is a system that acquires information from communication links to an ambulance or other vehicle moving on a road and compiles a database based on this information. The equipment (six sets of HDTVs, fish-eye camera, satellite antenna with tracking system, and receiving power from the satellite beacon of the N-star) mounted on the roof of the vehicle, image data were obtained at Yokohama Japan. From these data, the polygon of the building was actually produced and has arranged on the map of the Geographical Survey Institute of a 50 m-mesh. The optical study (relationship between visibility rate and elevation angle) were performed on actual data taken by fish-eye lens, and simulated data by 3D-Map with polygons. There was no big difference. This 3D map system then predicts the communication links that will be available at a given location. For line-of-sight communication, optical analysis allows approximation if the frequency is sufficiently high. For non-line-of-sight communication, previously obtained electric power data can be used as reference information for approximation in certain cases when combined with predicted values calculated based on a 3D map. 3D maps are more effective than 2D maps for landing emergency medical helicopters on public roadways in the event of a disaster. Using advanced imaging technologies, we have produced a semi-automatic creation of a high-precision 3D map at Yokohama Yamashita Park and vicinity and assessed its effectiveness on telecommunications and ambulatory merits.

Design of Off-axis Wide Angle Lens for the Automobile Application

  • Kim, Tae Young;Shin, Min-Ho;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.336-343
    • /
    • 2013
  • Recently various types of driver assistance systems have been used for automobiles. In 2008, the U.S Congress passed a law which required that most cars be equipped with devices to warn objects behind the vehicle. Because of that, market of rear view cameras is expected to rise dramatically. Therefore many suppliers try to provide a wide angle camera for car makers. But a high distortion is caused by the wide angle might result in lower image quality. In order to improve the image quality, normally we use an algorithm to correct a distortion. Though we can improve the distorted image by correction algorithm, we must pay more cost to use it. In this paper, we propose a new optical system reducing a distortion in contrast to a conventional lens without cost. In other words, we can see only an area of interest. That is similar to reducing a field of view. Using a new optical system, we can get a less distorted image. In order to view an area of interest, we introduce an off axis optical system having refractive surfaces and reflective surfaces. In this paper, we describe the results of design and, evaluation of an off axis wide angle compact imaging system. In comparison to conventional wide angle lens, we can get the improvement of MTF, distortion, and lateral color aberrations. And we also can reduce a total cost because we don't need the outer apparatus or bracket to mount on the car.

개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법 (Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information)

  • 정진성;김현태;장영민;조상복
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.96-110
    • /
    • 2017
  • 기존의 차량 검출 연구들의 대부분은 일반렌즈 또는 광각렌즈를 가지는 후방 카메라를 사용하기 때문에 사각지대가 넓으며, 영상에 노이즈 및 다양한 외부 환경에 취약한 부분이 있다. 본 논문에서는 사각지대를 줄이고, 노이즈 및 가혹한 외부 환경에서도 인식이 가능한 검출 방법을 제안한다. 먼저 광각렌즈보다 더 넓은 화각을 가진 어안렌즈를 이용해 사각지대를 최소화한다. 렌즈의 화각이 커진 만큼 비선형 방사왜곡도 커지게 되므로, 정확한 영상 결과를 얻기 위해서 왜곡 상수 초기화와 최적화를 실시한 후 Calibration을 이용하였다. 그리고 Calibration과 동시에 원본 영상을 분석하여 안개가 자욱한 상황과 갑작스러운 조도 변화로 인해 생기는 명순응, 암순응 현상에 의한 시야 방해 상황에서도 인식이 가능하도록 안개 제거와 밝기 보정을 이용하였다. 안개 제거는 일반적으로 계산 시간이 매우 크다. 따라서 계산 시간을 줄이기 위해 대표적인 안개 제거 알고리즘인 Dark channel prior를 기반으로 안개를 제거하였다. 밝기 보정 시에는 Gamma correction을 이용했고, 보정에 필요한 Gamma value를 결정하기 위해 영상에 대한 밝기 및 명암 평가가 수행하였다. 평가는 영상의 전체가 아닌 일부분을 이용하여 할애되는 계산시간을 줄였다. 밝기 및 명암 값이 계산되면 그 값을 이용해 Gamma value를 결정하고 전체 영상에 보정을 실시하였다. 그리고 밝기 보정과 안개 제거로 나누어 병렬 처리한 후, 영상을 하나로 정합함으로써 전 처리 과정의 연산시간을 줄였다. 이후 보정된 영상으로부터 특징추출법인 HOG를 이용하여 차량을 검출하였다. 그 결과 본 논문에서 제안하는 방법의 영상 보정을 이용한 차량 검출을 하는데 1프레임당 0.064초가 걸렸으며, 기존의 차량 검출 방법에 비해 7.5%의 향상된 검출률을 얻었다.