• Title/Summary/Keyword: Vehicle detection and tracking

Search Result 150, Processing Time 0.022 seconds

A Vehicle Tracking Algorithm Focused on the Initialization of Vehicle Detection-and Distance Estimation (초기 차량 검출 및 거리 추정을 중심으로 한 차량 추적 알고리즘)

  • 이철헌;설성욱;김효성;남기곤;주재흠
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1496-1504
    • /
    • 2004
  • In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.

Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm (MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법)

  • Hwang, Jung-Won;Kim, Nam-Hoon;Yoon, Jeong-Yeon;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time (차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅)

  • Valijon, Khalilov;Oh, Ryumduck;Kim, Bongkeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm (빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적)

  • Park, Min Woo;Won, Kwang Hee;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.764-781
    • /
    • 2013
  • In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method (동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구)

  • Kwon, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.209-215
    • /
    • 2015
  • In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

Fast Vehicle Detection based on Haarlike and Vehicle Tracking using SURF Method (Haarlike 기반의 고속 차량 검출과 SURF를 이용한 차량 추적 알고리즘)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.

Vehicle Classification and Tracking Based on Deep Learning

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of Web Engineering
    • /
    • v.21 no.4
    • /
    • pp.1283-1294
    • /
    • 2022
  • Traffic volume is gradually increasing due to the development of technology and the concentration of people in cities. As the results, traffic congestion and traffic accidents are becoming social problems. Detecting and tracking a vehicle based on computer vision is a great helpful in providing important information such as identifying road traffic conditions and crime situations. However, vehicle detection and tracking using a camera is affected by environmental factors in which the camera is installed. In this paper, we thus propose a deep learning based on vehicle classification and tracking scheme to classify and track vehicles in a complex and diverse environment. Using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Methodology for Vehicle Trajectory Detection Using Long Distance Image Tracking (원거리 차량 추적 감지 방법)

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • Video image processing systems (VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on a wide-area detection algorithm provide traffic parameters such as flow and velocity as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. However, unlike human vision, VIPS cameras have difficulty in recognizing vehicle movements over a detection zone longer than 100 meters. Over such a distance, the camera operators need to zoom in to recognize objects. As a result, vehicle tracking with a single camera is limited to detection zones under 100m. This paper develops a methodology capable of monitoring individual vehicle trajectories based on image processing. To improve traffic flow surveillance, a long distance tracking algorithm for use over 200m is developed with multi-closed circuit television (CCTV) cameras. The algorithm is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of incident detection.

  • PDF

A Vehicle Detection and Tracking Algorithm Using Local Features of The Vehicle in Tunnel (차량의 부분 특징을 이용한 터널 내에서의 차량 검출 및 추적 알고리즘)

  • Kim, Hyun-Tae;Kim, Gyu-Young;Do, Jin-Kyu;Park, Jang Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1179-1186
    • /
    • 2013
  • In this paper, an efficient vehicle detection and tracking algorithm for detection incident in tunnel is proposed. The proposed algorithm consists of three steps. The first one is a step for background estimates, low computational complexity and memory consumption Running Gaussian Average (RGA) is used. The second step is vehicle detection step, Adaboost algorithm is applied to this step. In order to reduce false detection from a relatively remote location of the vehicles, local features according to height of vehicles are used to detect vehicles. If the local features of an object are more than the threshold value, the object is classified as a vehicle. The last step is a vehicle tracking step, the Kalman filter is applied to track moving objects. Through computer simulations, the proposed algorithm was found that useful to detect and track vehicles in the tunnel.