• Title/Summary/Keyword: Vehicle detection and tracking

Search Result 150, Processing Time 0.035 seconds

Realtime Vehicle Tracking and Region Detection in Indoor Parking Lot for Intelligent Parking Control (지능형 주차 관제를 위한 실내주차장에서 실시간 차량 추적 및 영역 검출)

  • Yeon, Seungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.418-427
    • /
    • 2016
  • A smart parking management requires to track a vehicle in a indoor parking lot and to detect the place where the vehicle is parked. An advanced parking system watches all space of the parking lot with CCTV cameras. We can use these cameras for vehicles tracking and detection. In order to cover a wide area with a camera, a fisheye lens is used. In this case the shape and size of an moving vehicle vary much with distance and angle to the camera. This makes vehicle detection and tracking difficult. In addition to the fisheye lens, the vehicle headlights also makes vehicle detection and tracking difficult. This paper describes a method of realtime vehicle detection and tracking robust to the harsh situation described above. In each image frame, we update the region of a vehicle and estimate the vehicle movement. First we approximate the shape of a car with a quadrangle and estimate the four sides of the car using multiple histograms of oriented gradient. Second we create a template by applying a distance transform to the car region and estimate the motion of the car with a template matching method.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Vehicle extraction and tracking of stereo (스테레오를 이용한 차량 검출 및 추적)

  • Youn, Se-Jin;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2962-2964
    • /
    • 1999
  • We know the traffic information about the velocity and position of vehicle by extraction and tracking vehicle from continuosly obtained road image of camera. The conventional method of vehicle detection indicate increment of error due to headlight and taillight in night road image. This paper show such as vehicle detection of binary, Edge detection. amalgamation of image are applied to extract the vehicle, and Kalman filter is adaptive methods for tracking position and velocity of vehicle.

  • PDF

Deep-learning Sliding Window Based Object Detection and Tracking for Generating Trigger Signal of the LPR System (LPR 시스템 트리거 신호 생성을 위한 딥러닝 슬라이딩 윈도우 방식의 객체 탐지 및 추적)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.85-94
    • /
    • 2021
  • The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking (차선인식을 위한 무인자동차의 차량제어 및 모델링에 관한 연구)

  • 김상겸;임하영;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.213-221
    • /
    • 2003
  • This paper describes a method of lane tracking by means of a vision system which includes vehicle control and modeling. Lane tracking is considered one of the important technologies in an unmanned vehicle and mobile robot system. The current position and condition of the vehicle are calculated from an image processing method by a CCD camera. We deal with lane tracking as follows. First, vehicle control is included in the road model, and lateral and longitudinal controls. Second, the image processing method deals with the lane detection method, image processing algerian, and filtering method. Finally, this paper proposes a correct method for lane detection through a vehicle test by wireless data communication.

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Traffic Accident Detection Based on Ego Motion and Object Tracking

  • Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.

Vehicle detection and tracking algorithm based on improved feature extraction

  • Xiaole Ge;Feng Zhou;Shuaiting Chen;Gan Gao;Rugang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2642-2664
    • /
    • 2024
  • In the process of modern traffic management, information technology has become an important part of intelligent traffic governance. Real-time monitoring can accurately and effectively track and record vehicles, which is of great significance to modern urban traffic management. Existing tracking algorithms are affected by the environment, viewpoint, etc., and often have problems such as false detection, imprecise anchor boxes, and ID switch. Based on the YOLOv5 algorithm, we improve the loss function, propose a new feature extraction module to obtain the receptive field at different scales, and do adaptive fusion with the SGE attention mechanism, so that it can effectively suppress the noise information during feature extraction. The trained model improves the mAP value by 5.7% on the public dataset UA-DETRAC without increasing the amount of calculations. Meanwhile, for vehicle feature recognition, we adaptively adjust the network structure of the DeepSort tracking algorithm. Finally, we tested the tracking algorithm on the public dataset and in a realistic scenario. The results show that the improved algorithm has an increase in the values of MOTA and MT etc., which generally improves the reliability of vehicle tracking.

Preceding Vehicle Detection and Tracking with Motion Estimation by Radar-vision Sensor Fusion (레이더와 비전센서 융합기반의 움직임추정을 이용한 전방차량 검출 및 추적)

  • Jang, Jaehwan;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.265-274
    • /
    • 2012
  • In this paper, we propose a method for preceding vehicle detection and tracking with motion estimation by radar-vision sensor fusion. The motion estimation proposed results in not only correction of inaccurate lateral position error observed on a radar target, but also adaptive detection and tracking of a preceding vehicle by compensating the changes in the geometric relation between the ego-vehicle and the ground due to the driving. Furthermore, the feature-based motion estimation employed to lessen computational burden reduces the number of deployment of the vehicle validation procedure. Experimental results prove that the correction by the proposed motion estimation improves the performance of the vehicle detection and makes the tracking accurate with high temporal consistency under various road conditions.

Vision-Based Vehicle Detection and Tracking Using Online Learning (온라인 학습을 이용한 비전 기반의 차량 검출 및 추적)

  • Gil, Sung-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper we propose a system for vehicle detection and tracking which has the ability to learn on-line appearance changes of vehicles being tracked. The proposed system uses feature-based tracking method to estimate rapidly and robustly the motion of the newly detected vehicles between consecutive frames. Simultaneously, the system trains an online vehicle detector for the tracked vehicles. If the tracker fails, it is re-initialized by the detection of the online vehicle detector. An improved vehicle appearance model update rule is presented to increase a tracking performance and a speed of the proposed system. Performance of the proposed system is evaluated on the dataset acquired on various driving environment. In particular, the experimental results proved that the performance of the vehicle tracking is significantly improved under bad conditions such as entering a tunnel and passing rain.